Groups with the Rédei property

<p>Let <em>G</em> be a finite abelian group of type (4, 4, 2) or<em> ( p^2 , p)</em>, where <em>p</em> is a prime. Assume that <em>AB</em> is a direct product giving <em>G</em>, where<em> A</em> and<em> B</em>...

Full description

Bibliographic Details
Main Author: Sándor Szabó
Format: Article
Language:English
Published: Università degli Studi di Catania 1997-11-01
Series:Le Matematiche
Subjects:
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/414
id doaj-a9bfe86af33f41f4bcea5e00b615c2a3
record_format Article
spelling doaj-a9bfe86af33f41f4bcea5e00b615c2a32020-11-25T02:59:46ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52981997-11-01522357364386Groups with the Rédei propertySándor Szabó<p>Let <em>G</em> be a finite abelian group of type (4, 4, 2) or<em> ( p^2 , p)</em>, where <em>p</em> is a prime. Assume that <em>AB</em> is a direct product giving <em>G</em>, where<em> A</em> and<em> B</em> are subsets of<em> G</em> both containing the identity element of <em>G</em>. Then<em> A</em> or <em>B</em> lies in a proper subgroup of <em>G</em>.</p>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/414Factorization of finite abelian groupsHajós-Rédei theory
collection DOAJ
language English
format Article
sources DOAJ
author Sándor Szabó
spellingShingle Sándor Szabó
Groups with the Rédei property
Le Matematiche
Factorization of finite abelian groups
Hajós-Rédei theory
author_facet Sándor Szabó
author_sort Sándor Szabó
title Groups with the Rédei property
title_short Groups with the Rédei property
title_full Groups with the Rédei property
title_fullStr Groups with the Rédei property
title_full_unstemmed Groups with the Rédei property
title_sort groups with the rédei property
publisher Università degli Studi di Catania
series Le Matematiche
issn 0373-3505
2037-5298
publishDate 1997-11-01
description <p>Let <em>G</em> be a finite abelian group of type (4, 4, 2) or<em> ( p^2 , p)</em>, where <em>p</em> is a prime. Assume that <em>AB</em> is a direct product giving <em>G</em>, where<em> A</em> and<em> B</em> are subsets of<em> G</em> both containing the identity element of <em>G</em>. Then<em> A</em> or <em>B</em> lies in a proper subgroup of <em>G</em>.</p>
topic Factorization of finite abelian groups
Hajós-Rédei theory
url http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/414
work_keys_str_mv AT sandorszabo groupswiththeredeiproperty
_version_ 1724701147132854272