Groups with the Rédei property
<p>Let <em>G</em> be a finite abelian group of type (4, 4, 2) or<em> ( p^2 , p)</em>, where <em>p</em> is a prime. Assume that <em>AB</em> is a direct product giving <em>G</em>, where<em> A</em> and<em> B</em>...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Università degli Studi di Catania
1997-11-01
|
Series: | Le Matematiche |
Subjects: | |
Online Access: | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/414 |
id |
doaj-a9bfe86af33f41f4bcea5e00b615c2a3 |
---|---|
record_format |
Article |
spelling |
doaj-a9bfe86af33f41f4bcea5e00b615c2a32020-11-25T02:59:46ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52981997-11-01522357364386Groups with the Rédei propertySándor Szabó<p>Let <em>G</em> be a finite abelian group of type (4, 4, 2) or<em> ( p^2 , p)</em>, where <em>p</em> is a prime. Assume that <em>AB</em> is a direct product giving <em>G</em>, where<em> A</em> and<em> B</em> are subsets of<em> G</em> both containing the identity element of <em>G</em>. Then<em> A</em> or <em>B</em> lies in a proper subgroup of <em>G</em>.</p>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/414Factorization of finite abelian groupsHajós-Rédei theory |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sándor Szabó |
spellingShingle |
Sándor Szabó Groups with the Rédei property Le Matematiche Factorization of finite abelian groups Hajós-Rédei theory |
author_facet |
Sándor Szabó |
author_sort |
Sándor Szabó |
title |
Groups with the Rédei property |
title_short |
Groups with the Rédei property |
title_full |
Groups with the Rédei property |
title_fullStr |
Groups with the Rédei property |
title_full_unstemmed |
Groups with the Rédei property |
title_sort |
groups with the rédei property |
publisher |
Università degli Studi di Catania |
series |
Le Matematiche |
issn |
0373-3505 2037-5298 |
publishDate |
1997-11-01 |
description |
<p>Let <em>G</em> be a finite abelian group of type (4, 4, 2) or<em> ( p^2 , p)</em>, where <em>p</em> is a prime. Assume that <em>AB</em> is a direct product giving <em>G</em>, where<em> A</em> and<em> B</em> are subsets of<em> G</em> both containing the identity element of <em>G</em>. Then<em> A</em> or <em>B</em> lies in a proper subgroup of <em>G</em>.</p> |
topic |
Factorization of finite abelian groups Hajós-Rédei theory |
url |
http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/414 |
work_keys_str_mv |
AT sandorszabo groupswiththeredeiproperty |
_version_ |
1724701147132854272 |