Genomic mapping of social behavior traits in a F2 cross derived from mice selectively bred for high aggression

<p>Abstract</p> <p>Background</p> <p>Rapid response to selection was previously observed in mice selected for high levels of inter-male aggression based on number of attacks displayed in a novel social interaction test after isolation housing. Attack levels in this high...

Full description

Bibliographic Details
Main Authors: Perkins James, Buus Ryan J, Wang Shiliang, Nehrenberg Derrick L, de Villena Fernando, Pomp Daniel
Format: Article
Language:English
Published: BMC 2010-12-01
Series:BMC Genetics
Online Access:http://www.biomedcentral.com/1471-2156/11/113
id doaj-a9a75a259f514f0688631ecd601ea06d
record_format Article
spelling doaj-a9a75a259f514f0688631ecd601ea06d2020-11-25T03:55:12ZengBMCBMC Genetics1471-21562010-12-0111111310.1186/1471-2156-11-113Genomic mapping of social behavior traits in a F2 cross derived from mice selectively bred for high aggressionPerkins JamesBuus Ryan JWang ShiliangNehrenberg Derrick Lde Villena FernandoPomp Daniel<p>Abstract</p> <p>Background</p> <p>Rapid response to selection was previously observed in mice selected for high levels of inter-male aggression based on number of attacks displayed in a novel social interaction test after isolation housing. Attack levels in this high aggression line (NC900) increased significantly within just four generations of selective breeding, suggesting the presence of a locus with large effect. We conducted an experiment using a small (n ≈ 100) F<sub>2 </sub>cross between the ICR-derived, non-inbred NC900 strain and the low aggression inbred strain C57BL/6J, genotyped for 154 fully informative SNPs, to determine if a locus with large effect controls the high-aggression selection trait. A second goal was to use high density SNP genotyping (n = 549,000) in the parental strains to characterize residual patterns of heterozygosity within NC900, and evaluate regions that are identical by descent (IBD) between NC900 and C57BL/6J, to determine what impacts these may have on accuracy and resolution of quantitative trait locus (QTL) mapping in the F<sub>2 </sub>cross.</p> <p>Results</p> <p>No evidence for a locus with major effect on aggressive behavior in mice was identified. However, several QTL with genomewide significance were mapped for aggression on chromosomes 7 and 19 and other social behavior traits on chromosomes 4, 7, 14, and 19. High density genotyping revealed that 28% of the genome is still segregating among the six NC900 females used to originate the F<sub>2 </sub>cross, and that segregating regions are present on every chromosome but are of widely different sizes. Regions of IBD between NC900 and C57BL/6J are found on every chromosome but are most prominent on chromosomes 10, 16 and X. No significant differences were found for amounts of heterozygosity or prevalence of IBD in QTL regions relative to global analysis.</p> <p>Conclusions</p> <p>While no major gene was identified to explain the rapid selection response in the NC900 line, transgressive variation (i.e. where the allele from the C57BL/6J increased attack levels) and a significant role for dominant gene action were hallmarks of the genetic architecture for aggressive behavior uncovered in this study. The high levels of heterozygosity and the distribution of minor allele frequency observed in the NC900 population suggest that maintenance of heterozygosity may have been under selection in this line.</p> http://www.biomedcentral.com/1471-2156/11/113
collection DOAJ
language English
format Article
sources DOAJ
author Perkins James
Buus Ryan J
Wang Shiliang
Nehrenberg Derrick L
de Villena Fernando
Pomp Daniel
spellingShingle Perkins James
Buus Ryan J
Wang Shiliang
Nehrenberg Derrick L
de Villena Fernando
Pomp Daniel
Genomic mapping of social behavior traits in a F2 cross derived from mice selectively bred for high aggression
BMC Genetics
author_facet Perkins James
Buus Ryan J
Wang Shiliang
Nehrenberg Derrick L
de Villena Fernando
Pomp Daniel
author_sort Perkins James
title Genomic mapping of social behavior traits in a F2 cross derived from mice selectively bred for high aggression
title_short Genomic mapping of social behavior traits in a F2 cross derived from mice selectively bred for high aggression
title_full Genomic mapping of social behavior traits in a F2 cross derived from mice selectively bred for high aggression
title_fullStr Genomic mapping of social behavior traits in a F2 cross derived from mice selectively bred for high aggression
title_full_unstemmed Genomic mapping of social behavior traits in a F2 cross derived from mice selectively bred for high aggression
title_sort genomic mapping of social behavior traits in a f2 cross derived from mice selectively bred for high aggression
publisher BMC
series BMC Genetics
issn 1471-2156
publishDate 2010-12-01
description <p>Abstract</p> <p>Background</p> <p>Rapid response to selection was previously observed in mice selected for high levels of inter-male aggression based on number of attacks displayed in a novel social interaction test after isolation housing. Attack levels in this high aggression line (NC900) increased significantly within just four generations of selective breeding, suggesting the presence of a locus with large effect. We conducted an experiment using a small (n ≈ 100) F<sub>2 </sub>cross between the ICR-derived, non-inbred NC900 strain and the low aggression inbred strain C57BL/6J, genotyped for 154 fully informative SNPs, to determine if a locus with large effect controls the high-aggression selection trait. A second goal was to use high density SNP genotyping (n = 549,000) in the parental strains to characterize residual patterns of heterozygosity within NC900, and evaluate regions that are identical by descent (IBD) between NC900 and C57BL/6J, to determine what impacts these may have on accuracy and resolution of quantitative trait locus (QTL) mapping in the F<sub>2 </sub>cross.</p> <p>Results</p> <p>No evidence for a locus with major effect on aggressive behavior in mice was identified. However, several QTL with genomewide significance were mapped for aggression on chromosomes 7 and 19 and other social behavior traits on chromosomes 4, 7, 14, and 19. High density genotyping revealed that 28% of the genome is still segregating among the six NC900 females used to originate the F<sub>2 </sub>cross, and that segregating regions are present on every chromosome but are of widely different sizes. Regions of IBD between NC900 and C57BL/6J are found on every chromosome but are most prominent on chromosomes 10, 16 and X. No significant differences were found for amounts of heterozygosity or prevalence of IBD in QTL regions relative to global analysis.</p> <p>Conclusions</p> <p>While no major gene was identified to explain the rapid selection response in the NC900 line, transgressive variation (i.e. where the allele from the C57BL/6J increased attack levels) and a significant role for dominant gene action were hallmarks of the genetic architecture for aggressive behavior uncovered in this study. The high levels of heterozygosity and the distribution of minor allele frequency observed in the NC900 population suggest that maintenance of heterozygosity may have been under selection in this line.</p>
url http://www.biomedcentral.com/1471-2156/11/113
work_keys_str_mv AT perkinsjames genomicmappingofsocialbehaviortraitsinaf2crossderivedfrommiceselectivelybredforhighaggression
AT buusryanj genomicmappingofsocialbehaviortraitsinaf2crossderivedfrommiceselectivelybredforhighaggression
AT wangshiliang genomicmappingofsocialbehaviortraitsinaf2crossderivedfrommiceselectivelybredforhighaggression
AT nehrenbergderrickl genomicmappingofsocialbehaviortraitsinaf2crossderivedfrommiceselectivelybredforhighaggression
AT devillenafernando genomicmappingofsocialbehaviortraitsinaf2crossderivedfrommiceselectivelybredforhighaggression
AT pompdaniel genomicmappingofsocialbehaviortraitsinaf2crossderivedfrommiceselectivelybredforhighaggression
_version_ 1724470060158812160