Role of glutathione S transferase polymorphism in COPD with special reference to peoples living in the vicinity of the open cast coal mine of Assam.

BACKGROUND: COPD may develop due to variation in the functioning of antioxidants along with smoking and environmental factors in genetically susceptible individuals. Since there are different views about the antioxidants responsible for detoxifying xenobiotic compound in the human body whose functio...

Full description

Bibliographic Details
Main Authors: Tapan Dey, Kabita Gogoi, Bala Gopalan Unni, Munmi Kalita, Moonmee Bharadwaz, Minakshi Bhattacharjee, Pranab Kumar Boruah, Thaneswar Bora, Dibyajyoti Ozah, Manoj Kalita
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4014550?pdf=render
Description
Summary:BACKGROUND: COPD may develop due to variation in the functioning of antioxidants along with smoking and environmental factors in genetically susceptible individuals. Since there are different views about the antioxidants responsible for detoxifying xenobiotic compound in the human body whose functional variation may lead to obstructive disease, this associative study has been taken up between GST gene polymorphism and COPD in populations exposed to coal dusts. METHODS: Genotypes of the 70 COPD patients and 85 non COPD patients were determined by PCR based methods followed by multiplex PCR of GSTT1 and GSTM1 genes taking albumin gene as a control. Suspended particulate analyses were determined through the Respirable Dust sampler along with the FTIR analysis of the dust samples from the glass microfiber filters. RESULTS: Dust sampling analysis reveals higher level of respirable suspended particulate matter, non respirable particulate matter, SO2 and NO2 present in air of the study site. FTIR analysis also suggests a higher concentration of organic silicone and aliphatic C-F compounds present in air of the study site and when spirometry was done, low lung function was observed among most of the subjects. GSTM1 null type was significantly associated with low lung function in smoker groups and the presence of at least one active allele (either GSTM1/GSTT1) seemed to have a protective role in the development of COPD. CONCLUSIONS: GSTM1 (null genotype) appeared to be a risk factor for lower lung function in smokers living in the vicinity of coal mines. Apart from polluted environment and genetic susceptibility, mixed coal dust exposure rich in organic silicone and aliphatic C-F compounds also appears to be a factor for the low lung function.
ISSN:1932-6203