Histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: Evidence from a novel CARNS1 knockout rat model
Histidine-containing dipeptides (HCDs) are abundantly expressed in striated muscles. Although important properties have been ascribed to HCDs, including H+ buffering, regulation of Ca2+ transients and protection against oxidative stress, it remains unknown whether they play relevant functions in viv...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-08-01
|
Series: | Redox Biology |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2213231721001749 |
id |
doaj-a9598ad9e37346bba801d36e51ccf3f4 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lívia de Souza Gonçalves Lucas Peixoto Sales Tiemi Raquel Saito Juliane Cruz Campos Alan Lins Fernandes José Natali Leonardo Jensen Alexandre Arnold Lisley Ramalho Luiz Roberto Grassmann Bechara Marcos Vinicius Esteca Isis Correa Diogo Sant'Anna Alexandre Ceroni Lisete Compagno Michelini Bruno Gualano Walcy Teodoro Victor Henrique Carvalho Bianca Scigliano Vargas Marisa Helena Gennari Medeiros Igor Luchini Baptista Maria Cláudia Irigoyen Craig Sale Julio Cesar Batista Ferreira Guilherme Giannini Artioli |
spellingShingle |
Lívia de Souza Gonçalves Lucas Peixoto Sales Tiemi Raquel Saito Juliane Cruz Campos Alan Lins Fernandes José Natali Leonardo Jensen Alexandre Arnold Lisley Ramalho Luiz Roberto Grassmann Bechara Marcos Vinicius Esteca Isis Correa Diogo Sant'Anna Alexandre Ceroni Lisete Compagno Michelini Bruno Gualano Walcy Teodoro Victor Henrique Carvalho Bianca Scigliano Vargas Marisa Helena Gennari Medeiros Igor Luchini Baptista Maria Cláudia Irigoyen Craig Sale Julio Cesar Batista Ferreira Guilherme Giannini Artioli Histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: Evidence from a novel CARNS1 knockout rat model Redox Biology Carnosine Cardiac dysfunction Carnosine synthase Skeletal muscle Cardiac muscle Calcium transient |
author_facet |
Lívia de Souza Gonçalves Lucas Peixoto Sales Tiemi Raquel Saito Juliane Cruz Campos Alan Lins Fernandes José Natali Leonardo Jensen Alexandre Arnold Lisley Ramalho Luiz Roberto Grassmann Bechara Marcos Vinicius Esteca Isis Correa Diogo Sant'Anna Alexandre Ceroni Lisete Compagno Michelini Bruno Gualano Walcy Teodoro Victor Henrique Carvalho Bianca Scigliano Vargas Marisa Helena Gennari Medeiros Igor Luchini Baptista Maria Cláudia Irigoyen Craig Sale Julio Cesar Batista Ferreira Guilherme Giannini Artioli |
author_sort |
Lívia de Souza Gonçalves |
title |
Histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: Evidence from a novel CARNS1 knockout rat model |
title_short |
Histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: Evidence from a novel CARNS1 knockout rat model |
title_full |
Histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: Evidence from a novel CARNS1 knockout rat model |
title_fullStr |
Histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: Evidence from a novel CARNS1 knockout rat model |
title_full_unstemmed |
Histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: Evidence from a novel CARNS1 knockout rat model |
title_sort |
histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: evidence from a novel carns1 knockout rat model |
publisher |
Elsevier |
series |
Redox Biology |
issn |
2213-2317 |
publishDate |
2021-08-01 |
description |
Histidine-containing dipeptides (HCDs) are abundantly expressed in striated muscles. Although important properties have been ascribed to HCDs, including H+ buffering, regulation of Ca2+ transients and protection against oxidative stress, it remains unknown whether they play relevant functions in vivo. To investigate the in vivo roles of HCDs, we developed the first carnosine synthase knockout (CARNS1−/−) rat strain to investigate the impact of an absence of HCDs on skeletal and cardiac muscle function. Male wild-type (WT) and knockout rats (4 months-old) were used. Skeletal muscle function was assessed by an exercise tolerance test, contractile function in situ and muscle buffering capacity in vitro. Cardiac function was assessed in vivo by echocardiography and cardiac electrical activity by electrocardiography. Cardiomyocyte contractile function was assessed in isolated cardiomyocytes by measuring sarcomere contractility, along with the determination of Ca2+ transient. Markers of oxidative stress, mitochondrial function and expression of proteins were also evaluated in cardiac muscle. Animals were supplemented with carnosine (1.8% in drinking water for 12 weeks) in an attempt to rescue tissue HCDs levels and function. CARNS1−/− resulted in the complete absence of carnosine and anserine, but it did not affect exercise capacity, skeletal muscle force production, fatigability or buffering capacity in vitro, indicating that these are not essential for pH regulation and function in skeletal muscle. In cardiac muscle, however, CARNS1−/− resulted in a significant impairment of contractile function, which was confirmed both in vivo and ex vivo in isolated sarcomeres. Impaired systolic and diastolic dysfunction were accompanied by reduced intracellular Ca2+ peaks and slowed Ca2+ removal, but not by increased markers of oxidative stress or impaired mitochondrial respiration. No relevant increases in muscle carnosine content were observed after carnosine supplementation. Results show that a primary function of HCDs in cardiac muscle is the regulation of Ca2+ handling and excitation-contraction coupling. |
topic |
Carnosine Cardiac dysfunction Carnosine synthase Skeletal muscle Cardiac muscle Calcium transient |
url |
http://www.sciencedirect.com/science/article/pii/S2213231721001749 |
work_keys_str_mv |
AT liviadesouzagoncalves histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT lucaspeixotosales histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT tiemiraquelsaito histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT julianecruzcampos histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT alanlinsfernandes histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT josenatali histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT leonardojensen histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT alexandrearnold histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT lisleyramalho histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT luizrobertograssmannbechara histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT marcosviniciusesteca histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT isiscorrea histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT diogosantanna histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT alexandreceroni histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT lisetecompagnomichelini histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT brunogualano histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT walcyteodoro histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT victorhenriquecarvalho histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT biancasciglianovargas histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT marisahelenagennarimedeiros histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT igorluchinibaptista histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT mariaclaudiairigoyen histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT craigsale histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT juliocesarbatistaferreira histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel AT guilhermegianniniartioli histidinedipeptidesarekeyregulatorsofexcitationcontractioncouplingincardiacmuscleevidencefromanovelcarns1knockoutratmodel |
_version_ |
1721380520443510784 |
spelling |
doaj-a9598ad9e37346bba801d36e51ccf3f42021-06-13T04:38:20ZengElsevierRedox Biology2213-23172021-08-0144102016Histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: Evidence from a novel CARNS1 knockout rat modelLívia de Souza Gonçalves0Lucas Peixoto Sales1Tiemi Raquel Saito2Juliane Cruz Campos3Alan Lins Fernandes4José Natali5Leonardo Jensen6Alexandre Arnold7Lisley Ramalho8Luiz Roberto Grassmann Bechara9Marcos Vinicius Esteca10Isis Correa11Diogo Sant'Anna12Alexandre Ceroni13Lisete Compagno Michelini14Bruno Gualano15Walcy Teodoro16Victor Henrique Carvalho17Bianca Scigliano Vargas18Marisa Helena Gennari Medeiros19Igor Luchini Baptista20Maria Cláudia Irigoyen21Craig Sale22Julio Cesar Batista Ferreira23Guilherme Giannini Artioli24Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, BrazilApplied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, BrazilApplied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, BrazilInstitute of Biomedical Sciences, University of Sao Paulo, BrazilApplied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, BrazilApplied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, BrazilLaboratório de Hipertensão do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, BrazilLaboratório de Hipertensão do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, BrazilInstitute of Biomedical Sciences, University of Sao Paulo, BrazilInstitute of Biomedical Sciences, University of Sao Paulo, BrazilLaboratory of Cell and Tissue Biology, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, BrazilLaboratório de Hipertensão do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, BrazilLaboratório de Hipertensão do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, BrazilDepartamento de Fisiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, BrazilDepartamento de Fisiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, BrazilApplied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, BrazilRheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, BrazilDepartamento de Bioquímica, Instituto de Química, Universidade de São Paulo, BrazilDepartamento de Bioquímica, Instituto de Química, Universidade de São Paulo, BrazilDepartamento de Bioquímica, Instituto de Química, Universidade de São Paulo, BrazilLaboratory of Cell and Tissue Biology, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, BrazilLaboratório de Hipertensão do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, BrazilMusculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, UKInstitute of Biomedical Sciences, University of Sao Paulo, BrazilApplied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, Brazil; Corresponding author. Applied Physiology & Nutrition Research Group; School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, Av. Professor Mello Moraes, 65. Cidade Universitaria, Sao Paulo, 05508-030, SP, Brazil.Histidine-containing dipeptides (HCDs) are abundantly expressed in striated muscles. Although important properties have been ascribed to HCDs, including H+ buffering, regulation of Ca2+ transients and protection against oxidative stress, it remains unknown whether they play relevant functions in vivo. To investigate the in vivo roles of HCDs, we developed the first carnosine synthase knockout (CARNS1−/−) rat strain to investigate the impact of an absence of HCDs on skeletal and cardiac muscle function. Male wild-type (WT) and knockout rats (4 months-old) were used. Skeletal muscle function was assessed by an exercise tolerance test, contractile function in situ and muscle buffering capacity in vitro. Cardiac function was assessed in vivo by echocardiography and cardiac electrical activity by electrocardiography. Cardiomyocyte contractile function was assessed in isolated cardiomyocytes by measuring sarcomere contractility, along with the determination of Ca2+ transient. Markers of oxidative stress, mitochondrial function and expression of proteins were also evaluated in cardiac muscle. Animals were supplemented with carnosine (1.8% in drinking water for 12 weeks) in an attempt to rescue tissue HCDs levels and function. CARNS1−/− resulted in the complete absence of carnosine and anserine, but it did not affect exercise capacity, skeletal muscle force production, fatigability or buffering capacity in vitro, indicating that these are not essential for pH regulation and function in skeletal muscle. In cardiac muscle, however, CARNS1−/− resulted in a significant impairment of contractile function, which was confirmed both in vivo and ex vivo in isolated sarcomeres. Impaired systolic and diastolic dysfunction were accompanied by reduced intracellular Ca2+ peaks and slowed Ca2+ removal, but not by increased markers of oxidative stress or impaired mitochondrial respiration. No relevant increases in muscle carnosine content were observed after carnosine supplementation. Results show that a primary function of HCDs in cardiac muscle is the regulation of Ca2+ handling and excitation-contraction coupling.http://www.sciencedirect.com/science/article/pii/S2213231721001749CarnosineCardiac dysfunctionCarnosine synthaseSkeletal muscleCardiac muscleCalcium transient |