On the Carathéodory Form in Higher-Order Variational Field Theory
The Carathéodory form of the calculus of variations belongs to the class of Lepage equivalents of first-order Lagrangians in field theory. Here, this equivalent is generalized for second- and higher-order Lagrangians by means of intrinsic geometric operations applied to the well-known Poincaré–Carta...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/5/800 |
Summary: | The Carathéodory form of the calculus of variations belongs to the class of Lepage equivalents of first-order Lagrangians in field theory. Here, this equivalent is generalized for second- and higher-order Lagrangians by means of intrinsic geometric operations applied to the well-known Poincaré–Cartan form and principal component of Lepage forms, respectively. For second-order theory, our definition coincides with the previous result obtained by Crampin and Saunders in a different way. The Carathéodory equivalent of the Hilbert Lagrangian in general relativity is discussed. |
---|---|
ISSN: | 2073-8994 |