Offshore Wind Energy Resource in the Kingdom of Morocco: Assessment of the Seasonal Potential Variability Based on Satellite Data

This study provides a first estimate of the offshore wind power potential along the Moroccan Atlantic shelf based on remotely sensed data. An in-depth knowledge of wind potential characteristics allows assessment of the offshore wind energy project. Based on consistent daily satellite data retrieved...

Full description

Bibliographic Details
Main Authors: Aïssa Benazzouz, Hassan Mabchour, Khalid El Had, Bendahhou Zourarah, Soumia Mordane
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/9/1/31
Description
Summary:This study provides a first estimate of the offshore wind power potential along the Moroccan Atlantic shelf based on remotely sensed data. An in-depth knowledge of wind potential characteristics allows assessment of the offshore wind energy project. Based on consistent daily satellite data retrieved from the Advanced Scatterometer (ASCAT) spanning the period from 2008 to 2017, the seasonal wind characteristics were statistically analyzed using the climatological Weibull distribution functions and an assessment of the Moroccan potential coastal wind energy resources was qualitatively analyzed across a range of sites likely to be suitable for possible exploitation. Also, an atlas of wind power density (WPD) at a height of 80 m was provided for the whole Moroccan coast. An examination of the bathymetrical conditions of the study area was carried out since bathymetry is among the primary factors that need to be examined with the wind potential during offshore wind project planning. The results were presented based on the average wind intensity and the prevailing direction, and also the wind power density was shown at monthly, seasonal and interannual time scale. The analysis indicated that the coastal wind regime of the southern area of Morocco has the greatest energy potential, with an average power density which can reach in some places a value around 450 W/m<sup>2</sup> at heights of 10 m and 80 m above sea level (a.s.l) (wind turbine hub height) more particularly in the south of the country.
ISSN:2077-1312