Dark confinement-deconfinement phase transition: a roadmap from Polyakov loop models to gravitational waves
Abstract We explore the confinement-deconfinement phase transition (PT) of the first order (FO) arising in SU(N) pure Yang-Mills theory, based on Polyakov loop models (PLMs), in light of the induced gravitational wave (GW) spectra. We demonstrate that the PLMs with the Haar measure term, involving m...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-09-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP09(2021)060 |
id |
doaj-a91bce39d0dc46f99389a16dfc6234ed |
---|---|
record_format |
Article |
spelling |
doaj-a91bce39d0dc46f99389a16dfc6234ed2021-09-19T11:57:06ZengSpringerOpenJournal of High Energy Physics1029-84792021-09-012021912810.1007/JHEP09(2021)060Dark confinement-deconfinement phase transition: a roadmap from Polyakov loop models to gravitational wavesZhaofeng Kang0Jiang Zhu1Shinya Matsuzaki2School of physics, Huazhong University of Science and TechnologySchool of physics, Huazhong University of Science and TechnologyCenter for Theoretical Physics and College of Physics, Jilin UniversityAbstract We explore the confinement-deconfinement phase transition (PT) of the first order (FO) arising in SU(N) pure Yang-Mills theory, based on Polyakov loop models (PLMs), in light of the induced gravitational wave (GW) spectra. We demonstrate that the PLMs with the Haar measure term, involving models successful in QCD with N = 3, are potentially incompatible with the large N scaling for the thermodynamic quantities and the latent heat at around the criticality of the FOPT reported from the lattice simulations. We then propose a couple of models of polynomial form, which we call the 4-6 PLM (with four- and six-point interactions among the basic PL fields which have center charge 1) and 4-8 PLM (with four- and eight-point interactions), and discuss how such models can naturally arise in the presence of a heavy PL with charge 2. We show that those models give the consistent thermodynamic and large N properties at around the criticality. The predicted GW spectra are shown to have high enough sensitivity to be probed in the future prospected interferometers such as BBO and DECIGO.https://doi.org/10.1007/JHEP09(2021)060Phenomenological Models |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhaofeng Kang Jiang Zhu Shinya Matsuzaki |
spellingShingle |
Zhaofeng Kang Jiang Zhu Shinya Matsuzaki Dark confinement-deconfinement phase transition: a roadmap from Polyakov loop models to gravitational waves Journal of High Energy Physics Phenomenological Models |
author_facet |
Zhaofeng Kang Jiang Zhu Shinya Matsuzaki |
author_sort |
Zhaofeng Kang |
title |
Dark confinement-deconfinement phase transition: a roadmap from Polyakov loop models to gravitational waves |
title_short |
Dark confinement-deconfinement phase transition: a roadmap from Polyakov loop models to gravitational waves |
title_full |
Dark confinement-deconfinement phase transition: a roadmap from Polyakov loop models to gravitational waves |
title_fullStr |
Dark confinement-deconfinement phase transition: a roadmap from Polyakov loop models to gravitational waves |
title_full_unstemmed |
Dark confinement-deconfinement phase transition: a roadmap from Polyakov loop models to gravitational waves |
title_sort |
dark confinement-deconfinement phase transition: a roadmap from polyakov loop models to gravitational waves |
publisher |
SpringerOpen |
series |
Journal of High Energy Physics |
issn |
1029-8479 |
publishDate |
2021-09-01 |
description |
Abstract We explore the confinement-deconfinement phase transition (PT) of the first order (FO) arising in SU(N) pure Yang-Mills theory, based on Polyakov loop models (PLMs), in light of the induced gravitational wave (GW) spectra. We demonstrate that the PLMs with the Haar measure term, involving models successful in QCD with N = 3, are potentially incompatible with the large N scaling for the thermodynamic quantities and the latent heat at around the criticality of the FOPT reported from the lattice simulations. We then propose a couple of models of polynomial form, which we call the 4-6 PLM (with four- and six-point interactions among the basic PL fields which have center charge 1) and 4-8 PLM (with four- and eight-point interactions), and discuss how such models can naturally arise in the presence of a heavy PL with charge 2. We show that those models give the consistent thermodynamic and large N properties at around the criticality. The predicted GW spectra are shown to have high enough sensitivity to be probed in the future prospected interferometers such as BBO and DECIGO. |
topic |
Phenomenological Models |
url |
https://doi.org/10.1007/JHEP09(2021)060 |
work_keys_str_mv |
AT zhaofengkang darkconfinementdeconfinementphasetransitionaroadmapfrompolyakovloopmodelstogravitationalwaves AT jiangzhu darkconfinementdeconfinementphasetransitionaroadmapfrompolyakovloopmodelstogravitationalwaves AT shinyamatsuzaki darkconfinementdeconfinementphasetransitionaroadmapfrompolyakovloopmodelstogravitationalwaves |
_version_ |
1717375354682736640 |