Bacterial Diversity and Community Composition Distribution in Cold-Desert Habitats of Qinghai—Tibet Plateau, China

Bacterial communities in cold-desert habitats play an important ecological role. However, the variation in bacterial diversity and community composition of the cold-desert ecosystem in Qinghai–Tibet Plateau remains unknown. To fill this scientific gape, Illumina MiSeq sequencing was performed on 15...

Full description

Bibliographic Details
Main Authors: Wei Zhang, Ali Bahadur, Wasim Sajjad, Gaosen Zhang, Fahad Nasir, Binglin Zhang, Xiukun Wu, Guangxiu Liu, Tuo Chen
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/9/2/262
Description
Summary:Bacterial communities in cold-desert habitats play an important ecological role. However, the variation in bacterial diversity and community composition of the cold-desert ecosystem in Qinghai–Tibet Plateau remains unknown. To fill this scientific gape, Illumina MiSeq sequencing was performed on 15 soil samples collected from different cold-desert habitats, including human-disturbed, vegetation coverage, desert land, and sand dune. The abundance-based coverage estimator, Shannon, and Chao indices showed that the bacterial diversity and abundance of the cold-desert were high. A significant variation reported in the bacterial diversity and community composition across the study area. Proteobacteria accounted for the largest proportion (12.4–55.7%) of all sequences, followed by Actinobacteria (9.2–39.7%), Bacteroidetes (1.8–21.5%), and Chloroflexi (2.7–12.6%). Furthermore, unclassified genera dominated in human-disturbed habitats. The community profiles of GeErMu, HongLiangHe, and CuoNaHu sites were different and metagenomic biomarkers were higher (22) in CuoNaHu sites. Among the soil physicochemical variables, the total nitrogen and electric conductivity significantly influenced the bacterial community structure. In conclusion, this study provides information regarding variation in diversity and composition of bacterial communities and elucidates the association between bacterial community structures and soil physicochemical variables in cold-desert habitats of Qinghai–Tibet Plateau.
ISSN:2076-2607