Comparative vibration analysis on IC engine with biodiesel and multi-walled carbon nanotube

Sound and vibration caused in the engine due to combustion process may affect the users. One of the vital qualities of diesel fuel is high sound and vibration. The vibration of the engine is one of the primary factors in engine structure and maintenance. Vibration estimation on the engine block, cyl...

Full description

Bibliographic Details
Main Authors: Velumani V, Manieniyan V, Sivaprakasam S
Format: Article
Language:English
Published: JVE International 2019-11-01
Series:Journal of Vibroengineering
Subjects:
Online Access:https://www.jvejournals.com/article/20459
Description
Summary:Sound and vibration caused in the engine due to combustion process may affect the users. One of the vital qualities of diesel fuel is high sound and vibration. The vibration of the engine is one of the primary factors in engine structure and maintenance. Vibration estimation on the engine block, cylinder head is a non-intrusive strategy and has been utilized effectively for fault prediction of diesel engines. The vibration signals along with signal processing techniques are utilized to highlights the features that are sensitive to faults. In this work, experimental tests have been carried out to assess the vibration of a diesel engine with diesel, 20 % biodiesel (Ethyl Ester of ground nut acid oil EEGOA) and 30 ppm Multi-walled Carbon Nano tubes with 20 % biodiesel (MWCNT30ppm B20EEGAO) at various load (20 %, 40 %, 60 %, 80 % and 100 %). Digital Vibration Meter Model: Equinox-VM 6360 is utilized to gauge the vibration in three unique positions, one is cylinder head of the engine, second one is crank of the engine, and third one is bottom of the engine. In this work, the vibration is measured in terms of acceleration. The MWCNT30ppm B20EEGAO blend demonstrates the lower vibration compared with different blends.
ISSN:1392-8716
2538-8460