Summary: | Image Coregistration for InSAR processing is a time-consuming procedure that is usually processed in batch mode. With the availability of low-energy GPU accelerators, processing at the edge is now a promising perspective. Starting from the individuation of the most computationally intensive kernels from existing algorithms, we decomposed the cross-correlation problem from a multilevel point of view, intending to design and implement an efficient GPU-parallel algorithm for multiple settings, including the edge computing one. We analyzed the accuracy and performance of the proposed algorithm—also considering power efficiency—and its applicability to the identified settings. Results show that a significant speedup of InSAR processing is possible by exploiting GPU computing in different scenarios with no loss of accuracy, also enabling onboard processing using SoC hardware.
|