For Better or Worse: The Effect of Prismatic Adaptation on Auditory Neglect

Patients with auditory neglect attend less to auditory stimuli on their left and/or make systematic directional errors when indicating sound positions. Rightward prismatic adaptation (R-PA) was repeatedly shown to alleviate symptoms of visuospatial neglect and once to restore partially spatial bias...

Full description

Bibliographic Details
Main Authors: Isabel Tissieres, Mona Elamly, Stephanie Clarke, Sonia Crottaz-Herbette
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Neural Plasticity
Online Access:http://dx.doi.org/10.1155/2017/8721240
Description
Summary:Patients with auditory neglect attend less to auditory stimuli on their left and/or make systematic directional errors when indicating sound positions. Rightward prismatic adaptation (R-PA) was repeatedly shown to alleviate symptoms of visuospatial neglect and once to restore partially spatial bias in dichotic listening. It is currently unknown whether R-PA affects only this ear-related symptom or also other aspects of auditory neglect. We have investigated the effect of R-PA on left ear extinction in dichotic listening, space-related inattention assessed by diotic listening, and directional errors in auditory localization in patients with auditory neglect. The most striking effect of R-PA was the alleviation of left ear extinction in dichotic listening, which occurred in half of the patients with initial deficit. In contrast to nonresponders, their lesions spared the right dorsal attentional system and posterior temporal cortex. The beneficial effect of R-PA on an ear-related performance contrasted with detrimental effects on diotic listening and auditory localization. The former can be parsimoniously explained by the SHD-VAS model (shift in hemispheric dominance within the ventral attentional system; Clarke and Crottaz-Herbette 2016), which is based on the R-PA-induced shift of the right-dominant ventral attentional system to the left hemisphere. The negative effects in space-related tasks may be due to the complex nature of auditory space encoding at a cortical level.
ISSN:2090-5904
1687-5443