Reducing Neuron Apoptosis in the Pontine Micturition Center by Nerve Root Transfer for Restoration of Micturition Function after Spinal Cord Injury

Objective. The rate of neuronal apoptosis increases after spinal cord injury (SCI). Anastomosing the normal nerve roots above the SCI level to the injured sacral nerve roots can enhance the functional recovery of neurons. Therefore, we evaluated the effect of sacral nerve root transfer after SCI on...

Full description

Bibliographic Details
Main Authors: Ronghua Yu, Gang Yin, Jianguo Zhao, Huihao Chen, Depeng Meng, Jiaqiang Zhang, Yaofa Lin, Zheng Xie, Chunlin Hou, Haodong Lin
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2020/5615097
Description
Summary:Objective. The rate of neuronal apoptosis increases after spinal cord injury (SCI). Anastomosing the normal nerve roots above the SCI level to the injured sacral nerve roots can enhance the functional recovery of neurons. Therefore, we evaluated the effect of sacral nerve root transfer after SCI on pontine neuronal survival. Methods. Sprague–Dawley rats were randomly divided into three groups: Group A, reconstruction of afferent and efferent nerve pathways of the bladder after SCI; Group B, SCI only; and Group C, control group. We examined pontine neuronal morphology using hematoxylin and eosin (H&E) staining after SCI and nerve transfer. Bcl-2 and Bax protein expression changes in the pontine micturition center were quantified by immunohistochemistry. The number of apoptotic neurons was determined by TUNEL staining. We examined pontine neuronal apoptosis by transmission electron microscopy (TEM) at different time points. Results. H&E staining demonstrated that the number of neurons had increased in Group A, but more cells in Group B displayed nuclear pyknosis, with the disappearance of the nucleus. Compared with Group B, Group A had significantly higher Bcl-2 expression, significantly lower Bax expression, and a significantly higher Bcl-2/Bax ratio. The number of apoptotic neurons and neuron bodies in Group A was significantly lower than that in Group B, as indicated by TUNEL staining and TEM. Conclusions. These findings demonstrate that lumbosacral nerve transfer can reduce neuronal apoptosis in the pontine micturition center and enhance functional recovery of neurons. This result further suggests that lumbosacral nerve transfer can be used as a new approach for reconstructing bladder function after spinal cord injury.
ISSN:2314-6133
2314-6141