Quotient Module of Z-module

In this article we formalize a quotient module of Z-module and a vector space constructed by the quotient module. We formally prove that for a Z-module V and a prime number p, a quotient module V/pV has the structure of a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra...

Full description

Bibliographic Details
Main Authors: Futa Yuichi, Okazaki Hiroyuki, Shidama Yasunari
Format: Article
Language:English
Published: Sciendo 2012-12-01
Series:Formalized Mathematics
Online Access:https://doi.org/10.2478/v10037-012-0024-y
id doaj-a878d0d55e9245bb8d7e6da4b9927746
record_format Article
spelling doaj-a878d0d55e9245bb8d7e6da4b99277462021-09-05T18:16:48ZengSciendoFormalized Mathematics1426-26301898-99342012-12-0120320521410.2478/v10037-012-0024-yQuotient Module of Z-moduleFuta Yuichi0Okazaki Hiroyuki1Shidama Yasunari2Shinshu University, Nagano, JapanShinshu University, Nagano, JapanShinshu University, Nagano, JapanIn this article we formalize a quotient module of Z-module and a vector space constructed by the quotient module. We formally prove that for a Z-module V and a prime number p, a quotient module V/pV has the structure of a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattices [14]. Some theorems in this article are described by translating theorems in [20] and [19] into theorems of Z-module.https://doi.org/10.2478/v10037-012-0024-y
collection DOAJ
language English
format Article
sources DOAJ
author Futa Yuichi
Okazaki Hiroyuki
Shidama Yasunari
spellingShingle Futa Yuichi
Okazaki Hiroyuki
Shidama Yasunari
Quotient Module of Z-module
Formalized Mathematics
author_facet Futa Yuichi
Okazaki Hiroyuki
Shidama Yasunari
author_sort Futa Yuichi
title Quotient Module of Z-module
title_short Quotient Module of Z-module
title_full Quotient Module of Z-module
title_fullStr Quotient Module of Z-module
title_full_unstemmed Quotient Module of Z-module
title_sort quotient module of z-module
publisher Sciendo
series Formalized Mathematics
issn 1426-2630
1898-9934
publishDate 2012-12-01
description In this article we formalize a quotient module of Z-module and a vector space constructed by the quotient module. We formally prove that for a Z-module V and a prime number p, a quotient module V/pV has the structure of a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattices [14]. Some theorems in this article are described by translating theorems in [20] and [19] into theorems of Z-module.
url https://doi.org/10.2478/v10037-012-0024-y
work_keys_str_mv AT futayuichi quotientmoduleofzmodule
AT okazakihiroyuki quotientmoduleofzmodule
AT shidamayasunari quotientmoduleofzmodule
_version_ 1717786072509841408