A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data
The methods for accurately fusing medium- and high-spatial-resolution satellite reflectance are vital for monitoring vegetation biomass, agricultural irrigation, ecological processes and climate change. However, the currently existing fusion methods cannot accurately capture the temporal variation i...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/12/14/2312 |
id |
doaj-a8718e84133a4cdaba6e3e89d3886260 |
---|---|
record_format |
Article |
spelling |
doaj-a8718e84133a4cdaba6e3e89d38862602020-11-25T02:49:16ZengMDPI AGRemote Sensing2072-42922020-07-01122312231210.3390/rs12142312A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat DataJunming Yang0Yunjun Yao1Yongxia Wei2Yuhu Zhang3Kun Jia4Xiaotong Zhang5Ke Shang6Xiangyi Bei7Xiaozheng Guo8State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaKey Laboratory of High Efficiency Utilization of Agricultural Water Resources, Ministry of Agriculture, School of Water Conservancy and Architecture, Northeast Agricultural University, Harbin 150030, ChinaCollege of Resource Environment and Tourism, Capital Normal University, Beijing 100048, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaThe methods for accurately fusing medium- and high-spatial-resolution satellite reflectance are vital for monitoring vegetation biomass, agricultural irrigation, ecological processes and climate change. However, the currently existing fusion methods cannot accurately capture the temporal variation in reflectance for heterogeneous landscapes. In this study, we proposed a new method, the spatial and temporal reflectance fusion method based on the unmixing theory and a fuzzy C-clustering model (FCMSTRFM), to generate Landsat-like time-series surface reflectance. Unlike other data fusion models, the FCMSTRFM improved the similarity of pixels grouped together by combining land cover maps and time-series data cluster algorithms to define endmembers. The proposed method was tested over a 2000 km<sup>2</sup> study area in Heilongjiang Provence, China, in 2017 and 2018 using ten images. The results show that the accuracy of the FCMSTRFM is better than that of the popular enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) (correlation coefficient (<i>R</i>): 0.8413 vs. 0.7589; root mean square error (RMSE): 0.0267 vs. 0.0401) and the spatial-temporal data fusion approach (STDFA) (R: 0.8413 vs. 0.7666; RMSE: 0.0267 vs. 0.0307). Importantly, the FCMSTRFM was able to maintain the details of temporal variations in complicated landscapes. The proposed method provides an alternative method to monitor the dynamics of land surface variables over complicated heterogeneous regions.https://www.mdpi.com/2072-4292/12/14/2312LandsatMODISFCMSTRFMspatiotemporal data fusionunmixing theory |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Junming Yang Yunjun Yao Yongxia Wei Yuhu Zhang Kun Jia Xiaotong Zhang Ke Shang Xiangyi Bei Xiaozheng Guo |
spellingShingle |
Junming Yang Yunjun Yao Yongxia Wei Yuhu Zhang Kun Jia Xiaotong Zhang Ke Shang Xiangyi Bei Xiaozheng Guo A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data Remote Sensing Landsat MODIS FCMSTRFM spatiotemporal data fusion unmixing theory |
author_facet |
Junming Yang Yunjun Yao Yongxia Wei Yuhu Zhang Kun Jia Xiaotong Zhang Ke Shang Xiangyi Bei Xiaozheng Guo |
author_sort |
Junming Yang |
title |
A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data |
title_short |
A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data |
title_full |
A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data |
title_fullStr |
A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data |
title_full_unstemmed |
A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data |
title_sort |
robust method for generating high-spatiotemporal-resolution surface reflectance by fusing modis and landsat data |
publisher |
MDPI AG |
series |
Remote Sensing |
issn |
2072-4292 |
publishDate |
2020-07-01 |
description |
The methods for accurately fusing medium- and high-spatial-resolution satellite reflectance are vital for monitoring vegetation biomass, agricultural irrigation, ecological processes and climate change. However, the currently existing fusion methods cannot accurately capture the temporal variation in reflectance for heterogeneous landscapes. In this study, we proposed a new method, the spatial and temporal reflectance fusion method based on the unmixing theory and a fuzzy C-clustering model (FCMSTRFM), to generate Landsat-like time-series surface reflectance. Unlike other data fusion models, the FCMSTRFM improved the similarity of pixels grouped together by combining land cover maps and time-series data cluster algorithms to define endmembers. The proposed method was tested over a 2000 km<sup>2</sup> study area in Heilongjiang Provence, China, in 2017 and 2018 using ten images. The results show that the accuracy of the FCMSTRFM is better than that of the popular enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) (correlation coefficient (<i>R</i>): 0.8413 vs. 0.7589; root mean square error (RMSE): 0.0267 vs. 0.0401) and the spatial-temporal data fusion approach (STDFA) (R: 0.8413 vs. 0.7666; RMSE: 0.0267 vs. 0.0307). Importantly, the FCMSTRFM was able to maintain the details of temporal variations in complicated landscapes. The proposed method provides an alternative method to monitor the dynamics of land surface variables over complicated heterogeneous regions. |
topic |
Landsat MODIS FCMSTRFM spatiotemporal data fusion unmixing theory |
url |
https://www.mdpi.com/2072-4292/12/14/2312 |
work_keys_str_mv |
AT junmingyang arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT yunjunyao arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT yongxiawei arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT yuhuzhang arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT kunjia arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT xiaotongzhang arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT keshang arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT xiangyibei arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT xiaozhengguo arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT junmingyang robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT yunjunyao robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT yongxiawei robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT yuhuzhang robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT kunjia robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT xiaotongzhang robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT keshang robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT xiangyibei robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata AT xiaozhengguo robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata |
_version_ |
1724744627308724224 |