A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data

The methods for accurately fusing medium- and high-spatial-resolution satellite reflectance are vital for monitoring vegetation biomass, agricultural irrigation, ecological processes and climate change. However, the currently existing fusion methods cannot accurately capture the temporal variation i...

Full description

Bibliographic Details
Main Authors: Junming Yang, Yunjun Yao, Yongxia Wei, Yuhu Zhang, Kun Jia, Xiaotong Zhang, Ke Shang, Xiangyi Bei, Xiaozheng Guo
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/14/2312
id doaj-a8718e84133a4cdaba6e3e89d3886260
record_format Article
spelling doaj-a8718e84133a4cdaba6e3e89d38862602020-11-25T02:49:16ZengMDPI AGRemote Sensing2072-42922020-07-01122312231210.3390/rs12142312A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat DataJunming Yang0Yunjun Yao1Yongxia Wei2Yuhu Zhang3Kun Jia4Xiaotong Zhang5Ke Shang6Xiangyi Bei7Xiaozheng Guo8State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaKey Laboratory of High Efficiency Utilization of Agricultural Water Resources, Ministry of Agriculture, School of Water Conservancy and Architecture, Northeast Agricultural University, Harbin 150030, ChinaCollege of Resource Environment and Tourism, Capital Normal University, Beijing 100048, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, ChinaThe methods for accurately fusing medium- and high-spatial-resolution satellite reflectance are vital for monitoring vegetation biomass, agricultural irrigation, ecological processes and climate change. However, the currently existing fusion methods cannot accurately capture the temporal variation in reflectance for heterogeneous landscapes. In this study, we proposed a new method, the spatial and temporal reflectance fusion method based on the unmixing theory and a fuzzy C-clustering model (FCMSTRFM), to generate Landsat-like time-series surface reflectance. Unlike other data fusion models, the FCMSTRFM improved the similarity of pixels grouped together by combining land cover maps and time-series data cluster algorithms to define endmembers. The proposed method was tested over a 2000 km<sup>2</sup> study area in Heilongjiang Provence, China, in 2017 and 2018 using ten images. The results show that the accuracy of the FCMSTRFM is better than that of the popular enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) (correlation coefficient (<i>R</i>): 0.8413 vs. 0.7589; root mean square error (RMSE): 0.0267 vs. 0.0401) and the spatial-temporal data fusion approach (STDFA) (R: 0.8413 vs. 0.7666; RMSE: 0.0267 vs. 0.0307). Importantly, the FCMSTRFM was able to maintain the details of temporal variations in complicated landscapes. The proposed method provides an alternative method to monitor the dynamics of land surface variables over complicated heterogeneous regions.https://www.mdpi.com/2072-4292/12/14/2312LandsatMODISFCMSTRFMspatiotemporal data fusionunmixing theory
collection DOAJ
language English
format Article
sources DOAJ
author Junming Yang
Yunjun Yao
Yongxia Wei
Yuhu Zhang
Kun Jia
Xiaotong Zhang
Ke Shang
Xiangyi Bei
Xiaozheng Guo
spellingShingle Junming Yang
Yunjun Yao
Yongxia Wei
Yuhu Zhang
Kun Jia
Xiaotong Zhang
Ke Shang
Xiangyi Bei
Xiaozheng Guo
A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data
Remote Sensing
Landsat
MODIS
FCMSTRFM
spatiotemporal data fusion
unmixing theory
author_facet Junming Yang
Yunjun Yao
Yongxia Wei
Yuhu Zhang
Kun Jia
Xiaotong Zhang
Ke Shang
Xiangyi Bei
Xiaozheng Guo
author_sort Junming Yang
title A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data
title_short A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data
title_full A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data
title_fullStr A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data
title_full_unstemmed A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data
title_sort robust method for generating high-spatiotemporal-resolution surface reflectance by fusing modis and landsat data
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2020-07-01
description The methods for accurately fusing medium- and high-spatial-resolution satellite reflectance are vital for monitoring vegetation biomass, agricultural irrigation, ecological processes and climate change. However, the currently existing fusion methods cannot accurately capture the temporal variation in reflectance for heterogeneous landscapes. In this study, we proposed a new method, the spatial and temporal reflectance fusion method based on the unmixing theory and a fuzzy C-clustering model (FCMSTRFM), to generate Landsat-like time-series surface reflectance. Unlike other data fusion models, the FCMSTRFM improved the similarity of pixels grouped together by combining land cover maps and time-series data cluster algorithms to define endmembers. The proposed method was tested over a 2000 km<sup>2</sup> study area in Heilongjiang Provence, China, in 2017 and 2018 using ten images. The results show that the accuracy of the FCMSTRFM is better than that of the popular enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) (correlation coefficient (<i>R</i>): 0.8413 vs. 0.7589; root mean square error (RMSE): 0.0267 vs. 0.0401) and the spatial-temporal data fusion approach (STDFA) (R: 0.8413 vs. 0.7666; RMSE: 0.0267 vs. 0.0307). Importantly, the FCMSTRFM was able to maintain the details of temporal variations in complicated landscapes. The proposed method provides an alternative method to monitor the dynamics of land surface variables over complicated heterogeneous regions.
topic Landsat
MODIS
FCMSTRFM
spatiotemporal data fusion
unmixing theory
url https://www.mdpi.com/2072-4292/12/14/2312
work_keys_str_mv AT junmingyang arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT yunjunyao arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT yongxiawei arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT yuhuzhang arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT kunjia arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT xiaotongzhang arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT keshang arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT xiangyibei arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT xiaozhengguo arobustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT junmingyang robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT yunjunyao robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT yongxiawei robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT yuhuzhang robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT kunjia robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT xiaotongzhang robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT keshang robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT xiangyibei robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
AT xiaozhengguo robustmethodforgeneratinghighspatiotemporalresolutionsurfacereflectancebyfusingmodisandlandsatdata
_version_ 1724744627308724224