Stability of organometal perovskites with organic overlayers

The air-stability of vapour-phase-deposited methylammonium lead triiodide (CH3NH3PbI3) perovskite thin films has been studied using X-ray diffraction. It is found that the perovskite structure without organic coating decomposes completely within a short period of time (∼two days) upon exposure to am...

Full description

Bibliographic Details
Main Authors: Catherine D. T. Tran, Yi Liu, Emmanuel S. Thibau, Adrian Llanos, Zheng-Hong Lu
Format: Article
Language:English
Published: AIP Publishing LLC 2015-08-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4930082
Description
Summary:The air-stability of vapour-phase-deposited methylammonium lead triiodide (CH3NH3PbI3) perovskite thin films has been studied using X-ray diffraction. It is found that the perovskite structure without organic coating decomposes completely within a short period of time (∼two days) upon exposure to ambient environment. The degradation of the perovskite structure is drastically reduced when the perovskite films are capped with thin N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) films. We discovered that the amount of lead iodide (PbI2), a product of the degradation, grows as a function of time in a sigmoidal manner. Further mathematical modeling analysis shows that the perovskite degradation follows the Avrami equation, a kinetics theory developed for quantifying phase transformations in solid-state materials.
ISSN:2158-3226