Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells.
The testing of candidate drugs to slow progression of Alzheimer's disease (AD) requires clinical trials that are lengthy and expensive. Efforts to model the biochemical milieu of the AD brain may be greatly facilitated by combining two cutting edge technologies to generate three-dimensional (3D...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5042502?pdf=render |
id |
doaj-a859efebb5544b559c55c1424ad10da8 |
---|---|
record_format |
Article |
spelling |
doaj-a859efebb5544b559c55c1424ad10da82020-11-25T01:45:09ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01119e016307210.1371/journal.pone.0163072Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells.Han-Kyu LeeClara Velazquez SanchezMei ChenPeter J MorinJohn M WellsEugene B HanlonWeiming XiaThe testing of candidate drugs to slow progression of Alzheimer's disease (AD) requires clinical trials that are lengthy and expensive. Efforts to model the biochemical milieu of the AD brain may be greatly facilitated by combining two cutting edge technologies to generate three-dimensional (3D) human neuro-spheroid from induced pluripotent stem cells (iPSC) derived from AD subjects. We created iPSC from blood cells of five AD patients and differentiated them into 3D human neuronal culture. We characterized neuronal markers of our 3D neurons by immunocytochemical staining to validate the differentiation status. To block the generation of pathologic amyloid β peptides (Aβ), the 3D-differentiated AD neurons were treated with inhibitors targeting β-secretase (BACE1) and γ-secretases. As predicted, both BACE1 and γ-secretase inhibitors dramatically decreased Aβ generation in iPSC-derived neural cells derived from all five AD patients, under standard two-dimensional (2D) differentiation conditions. However, BACE1 and γ-secretase inhibitors showed less potency in decreasing Aβ levels in neural cells differentiated under 3D culture conditions. Interestingly, in a single subject AD1, we found that BACE1 inhibitor treatment was not able to significantly reduce Aβ42 levels. To investigate underlying molecular mechanisms, we performed proteomic analysis of 3D AD human neuronal cultures including AD1. Proteomic analysis revealed specific reduction of several proteins that might contribute to a poor inhibition of BACE1 in subject AD1. To our knowledge, this is the first iPSC-differentiated 3D neuro-spheroid model derived from AD patients' blood. Our results demonstrate that our 3D human neuro-spheroid model can be a physiologically relevant and valid model for testing efficacy of AD drug.http://europepmc.org/articles/PMC5042502?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Han-Kyu Lee Clara Velazquez Sanchez Mei Chen Peter J Morin John M Wells Eugene B Hanlon Weiming Xia |
spellingShingle |
Han-Kyu Lee Clara Velazquez Sanchez Mei Chen Peter J Morin John M Wells Eugene B Hanlon Weiming Xia Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells. PLoS ONE |
author_facet |
Han-Kyu Lee Clara Velazquez Sanchez Mei Chen Peter J Morin John M Wells Eugene B Hanlon Weiming Xia |
author_sort |
Han-Kyu Lee |
title |
Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells. |
title_short |
Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells. |
title_full |
Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells. |
title_fullStr |
Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells. |
title_full_unstemmed |
Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells. |
title_sort |
three dimensional human neuro-spheroid model of alzheimer's disease based on differentiated induced pluripotent stem cells. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
The testing of candidate drugs to slow progression of Alzheimer's disease (AD) requires clinical trials that are lengthy and expensive. Efforts to model the biochemical milieu of the AD brain may be greatly facilitated by combining two cutting edge technologies to generate three-dimensional (3D) human neuro-spheroid from induced pluripotent stem cells (iPSC) derived from AD subjects. We created iPSC from blood cells of five AD patients and differentiated them into 3D human neuronal culture. We characterized neuronal markers of our 3D neurons by immunocytochemical staining to validate the differentiation status. To block the generation of pathologic amyloid β peptides (Aβ), the 3D-differentiated AD neurons were treated with inhibitors targeting β-secretase (BACE1) and γ-secretases. As predicted, both BACE1 and γ-secretase inhibitors dramatically decreased Aβ generation in iPSC-derived neural cells derived from all five AD patients, under standard two-dimensional (2D) differentiation conditions. However, BACE1 and γ-secretase inhibitors showed less potency in decreasing Aβ levels in neural cells differentiated under 3D culture conditions. Interestingly, in a single subject AD1, we found that BACE1 inhibitor treatment was not able to significantly reduce Aβ42 levels. To investigate underlying molecular mechanisms, we performed proteomic analysis of 3D AD human neuronal cultures including AD1. Proteomic analysis revealed specific reduction of several proteins that might contribute to a poor inhibition of BACE1 in subject AD1. To our knowledge, this is the first iPSC-differentiated 3D neuro-spheroid model derived from AD patients' blood. Our results demonstrate that our 3D human neuro-spheroid model can be a physiologically relevant and valid model for testing efficacy of AD drug. |
url |
http://europepmc.org/articles/PMC5042502?pdf=render |
work_keys_str_mv |
AT hankyulee threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT claravelazquezsanchez threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT meichen threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT peterjmorin threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT johnmwells threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT eugenebhanlon threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT weimingxia threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells |
_version_ |
1725024691301646336 |