Proteome Analysis of the Gametophytes of a Western Himalayan Fern Diplazium maximum Reveals Their Adaptive Responses to Changes in Their Micro-Environment
Ferns have survived changing habitats and environmental extremes of different eras, wherein, the exploratory haploid gametophytes are believed to have played a major role. Therefore, the proteome of in vitro grown gametophytes of a temperate Himalayan fern, Diplazium maximum in response to 0 (G0), 1...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-12-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fpls.2019.01623/full |
id |
doaj-a83e39a7a18741c9a281751afb0ded33 |
---|---|
record_format |
Article |
spelling |
doaj-a83e39a7a18741c9a281751afb0ded332020-11-24T21:52:58ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2019-12-011010.3389/fpls.2019.01623489588Proteome Analysis of the Gametophytes of a Western Himalayan Fern Diplazium maximum Reveals Their Adaptive Responses to Changes in Their Micro-EnvironmentBhuvnesh Sareen0Bhuvnesh Sareen1Pooja Thapa2Pooja Thapa3Robin Joshi4Amita Bhattacharya5Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, IndiaDepartment of Biotechnology, Guru Nanak Dev University, Amritsar, IndiaDivision of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, IndiaDepartment of Biotechnology, Guru Nanak Dev University, Amritsar, IndiaDivision of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, IndiaDivision of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, IndiaFerns have survived changing habitats and environmental extremes of different eras, wherein, the exploratory haploid gametophytes are believed to have played a major role. Therefore, the proteome of in vitro grown gametophytes of a temperate Himalayan fern, Diplazium maximum in response to 0 (G0), 1 (G1), and 3% (G3) sucrose was studied. A total of 110 differentially abundant protein spots (DAPs) were obtained. Among these, only 67 could be functionally categorized as unique proteins involved in various metabolic processes. Calcium dependent proteins, receptor like kinases, G proteins, proteins related to hormonal signaling and their interaction with other pathways, and regulatory proteins were recorded indicating the involvement of five different signaling pathways. DAPs involved in the activation of genes and transcription factors of signaling and transduction pathways, transport and ion channels, cell-wall and structural proteins, defense, chaperons, energy metabolism, protein synthesis, modification, and turnover were identified. The gametophytes responded to changes in their micro-environment. There was also significant increase in prothallus biomass and conversion of two-dimensional prothalli into three-dimensional prothallus clumps at 3% sucrose. The three-D clumps had higher photosynthetic surface area and also closer proximity for sexual reproduction and sporophyte formation. Highest accumulation of proline, enhanced scavenging of reactive oxygen species (ROS) and DAPs of mostly, abiotic stress tolerance, secondary metabolite synthesis, and detoxification at 3% sucrose indicated an adaptive response of gametophytes. Protein Protein Interaction network and Principal Component analyses, and qRT-PCR validation of genes encoding 12 proteins of various metabolic processes indicated differential adjustment of gametophytes to different levels of sucrose in the culture medium. Therefore, a hypothetical mechanism was proposed to show that even slight changes in the micro-environment of D. maximum gametophytes triggered multiple mechanisms of adaptation. Many DAPs identified in the study have potential use in crop improvement and metabolic engineering programs, phytoremediation and environmental protection.https://www.frontiersin.org/article/10.3389/fpls.2019.01623/fulldifferentially abundant proteinsedible fernhaploidhigher growth rateosmotic changesgametophytes clumps |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bhuvnesh Sareen Bhuvnesh Sareen Pooja Thapa Pooja Thapa Robin Joshi Amita Bhattacharya |
spellingShingle |
Bhuvnesh Sareen Bhuvnesh Sareen Pooja Thapa Pooja Thapa Robin Joshi Amita Bhattacharya Proteome Analysis of the Gametophytes of a Western Himalayan Fern Diplazium maximum Reveals Their Adaptive Responses to Changes in Their Micro-Environment Frontiers in Plant Science differentially abundant proteins edible fern haploid higher growth rate osmotic changes gametophytes clumps |
author_facet |
Bhuvnesh Sareen Bhuvnesh Sareen Pooja Thapa Pooja Thapa Robin Joshi Amita Bhattacharya |
author_sort |
Bhuvnesh Sareen |
title |
Proteome Analysis of the Gametophytes of a Western Himalayan Fern Diplazium maximum Reveals Their Adaptive Responses to Changes in Their Micro-Environment |
title_short |
Proteome Analysis of the Gametophytes of a Western Himalayan Fern Diplazium maximum Reveals Their Adaptive Responses to Changes in Their Micro-Environment |
title_full |
Proteome Analysis of the Gametophytes of a Western Himalayan Fern Diplazium maximum Reveals Their Adaptive Responses to Changes in Their Micro-Environment |
title_fullStr |
Proteome Analysis of the Gametophytes of a Western Himalayan Fern Diplazium maximum Reveals Their Adaptive Responses to Changes in Their Micro-Environment |
title_full_unstemmed |
Proteome Analysis of the Gametophytes of a Western Himalayan Fern Diplazium maximum Reveals Their Adaptive Responses to Changes in Their Micro-Environment |
title_sort |
proteome analysis of the gametophytes of a western himalayan fern diplazium maximum reveals their adaptive responses to changes in their micro-environment |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Plant Science |
issn |
1664-462X |
publishDate |
2019-12-01 |
description |
Ferns have survived changing habitats and environmental extremes of different eras, wherein, the exploratory haploid gametophytes are believed to have played a major role. Therefore, the proteome of in vitro grown gametophytes of a temperate Himalayan fern, Diplazium maximum in response to 0 (G0), 1 (G1), and 3% (G3) sucrose was studied. A total of 110 differentially abundant protein spots (DAPs) were obtained. Among these, only 67 could be functionally categorized as unique proteins involved in various metabolic processes. Calcium dependent proteins, receptor like kinases, G proteins, proteins related to hormonal signaling and their interaction with other pathways, and regulatory proteins were recorded indicating the involvement of five different signaling pathways. DAPs involved in the activation of genes and transcription factors of signaling and transduction pathways, transport and ion channels, cell-wall and structural proteins, defense, chaperons, energy metabolism, protein synthesis, modification, and turnover were identified. The gametophytes responded to changes in their micro-environment. There was also significant increase in prothallus biomass and conversion of two-dimensional prothalli into three-dimensional prothallus clumps at 3% sucrose. The three-D clumps had higher photosynthetic surface area and also closer proximity for sexual reproduction and sporophyte formation. Highest accumulation of proline, enhanced scavenging of reactive oxygen species (ROS) and DAPs of mostly, abiotic stress tolerance, secondary metabolite synthesis, and detoxification at 3% sucrose indicated an adaptive response of gametophytes. Protein Protein Interaction network and Principal Component analyses, and qRT-PCR validation of genes encoding 12 proteins of various metabolic processes indicated differential adjustment of gametophytes to different levels of sucrose in the culture medium. Therefore, a hypothetical mechanism was proposed to show that even slight changes in the micro-environment of D. maximum gametophytes triggered multiple mechanisms of adaptation. Many DAPs identified in the study have potential use in crop improvement and metabolic engineering programs, phytoremediation and environmental protection. |
topic |
differentially abundant proteins edible fern haploid higher growth rate osmotic changes gametophytes clumps |
url |
https://www.frontiersin.org/article/10.3389/fpls.2019.01623/full |
work_keys_str_mv |
AT bhuvneshsareen proteomeanalysisofthegametophytesofawesternhimalayanferndiplaziummaximumrevealstheiradaptiveresponsestochangesintheirmicroenvironment AT bhuvneshsareen proteomeanalysisofthegametophytesofawesternhimalayanferndiplaziummaximumrevealstheiradaptiveresponsestochangesintheirmicroenvironment AT poojathapa proteomeanalysisofthegametophytesofawesternhimalayanferndiplaziummaximumrevealstheiradaptiveresponsestochangesintheirmicroenvironment AT poojathapa proteomeanalysisofthegametophytesofawesternhimalayanferndiplaziummaximumrevealstheiradaptiveresponsestochangesintheirmicroenvironment AT robinjoshi proteomeanalysisofthegametophytesofawesternhimalayanferndiplaziummaximumrevealstheiradaptiveresponsestochangesintheirmicroenvironment AT amitabhattacharya proteomeanalysisofthegametophytesofawesternhimalayanferndiplaziummaximumrevealstheiradaptiveresponsestochangesintheirmicroenvironment |
_version_ |
1725873750808723456 |