Density, refractive index and molar refractivity of binary liquid mixture at 293.15, 298.15, 303.15, 308.15 and 313.15 K

Densities and refractive indices were measured for the binary liquid mixtures formed by formamide, N-methylacetamide, di-methylformamide and di-methylacetamide with acetonitrile at T = 293.15, 298.15, 303.15, 308.15 and 313.15 K and atmospheric pressure over the whole concentration range. Lorentz–Lo...

Full description

Bibliographic Details
Main Authors: R.K. Shukla, Atul Kumar, Urvashi Srivastava, Kirti Srivastava, V.S. Gangwar
Format: Article
Language:English
Published: Elsevier 2016-11-01
Series:Arabian Journal of Chemistry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S187853521200041X
Description
Summary:Densities and refractive indices were measured for the binary liquid mixtures formed by formamide, N-methylacetamide, di-methylformamide and di-methylacetamide with acetonitrile at T = 293.15, 298.15, 303.15, 308.15 and 313.15 K and atmospheric pressure over the whole concentration range. Lorentz–Lorentz mixing rule, Ramaswamy and Anbananthan model and model devised by Glinski were used to study the refractive index and molar refractivity. These results have been discussed to study the type of mixing behavior between the mixing molecules. The measured data were fitted to the Redlich–Kister polynomial relation to estimate the binary coefficients and standard errors. Furthermore, McAllister multibody interaction model is used to correlate the binary refractive index with the experimental findings. It is observed that molar refractivity, molecular interaction and association constant can be better understood from these models.
ISSN:1878-5352