Applicability Assessment and Uncertainty Analysis of Multi-Precipitation Datasets for the Simulation of Hydrologic Models

Hydrologic models are essential tools for understanding hydrologic processes, such as precipitation, which is a fundamental component of the water cycle. For an improved understanding and the evaluation of different precipitation datasets, especially their applicability for hydrologic modelling, thr...

Full description

Bibliographic Details
Main Authors: Binbin Guo, Jing Zhang, Tingbao Xu, Barry Croke, Anthony Jakeman, Yongyu Song, Qin Yang, Xiaohui Lei, Weihong Liao
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/10/11/1611
Description
Summary:Hydrologic models are essential tools for understanding hydrologic processes, such as precipitation, which is a fundamental component of the water cycle. For an improved understanding and the evaluation of different precipitation datasets, especially their applicability for hydrologic modelling, three kinds of precipitation products, CMADS, TMPA-3B42V7 and gauge-interpolated datasets, are compared. Two hydrologic models (IHACRES and Sacramento) are applied to study the accuracy of the three types of precipitation products on the daily streamflow of the Lijiang River, which is located in southern China. The models are calibrated separately with different precipitation products, with the results showing that the CMADS product performs best based on the Nash–Sutcliffe efficiency, including a much better accuracy and better skill in capturing the streamflow peaks than the other precipitation products. The TMPA-3B42V7 product shows a small improvement on the gauge-interpolated product. Compared to TMPA-3B42V7, CMADS shows better agreement with the ground-observation data through a pixel-to-point comparison. The comparison of the two hydrologic models shows that both the IHACRES and Sacramento models perform well. The IHACRES model however displays less uncertainty and a higher applicability than the Sacramento model in the Lijiang River basin.
ISSN:2073-4441