Telugu dependency parsing using different statistical parsers

In this paper we explore different statistical dependency parsers for parsing Telugu. We consider five popular dependency parsers namely, MaltParser, MSTParser, TurboParser, ZPar and Easy-First Parser. We experiment with different parser and feature settings and show the impact of different settings...

Full description

Bibliographic Details
Main Authors: B. Venkata Seshu Kumari, Ramisetty Rajeshwara Rao
Format: Article
Language:English
Published: Elsevier 2017-01-01
Series:Journal of King Saud University: Computer and Information Sciences
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1319157815000798
id doaj-a7f9beb32d35426686b228321080e80f
record_format Article
spelling doaj-a7f9beb32d35426686b228321080e80f2020-11-24T22:28:17ZengElsevierJournal of King Saud University: Computer and Information Sciences1319-15782017-01-0129113414010.1016/j.jksuci.2014.12.006Telugu dependency parsing using different statistical parsersB. Venkata Seshu Kumari0Ramisetty Rajeshwara Rao1JNTUH, Hyderabad, Telangana, IndiaComputer Science & Engineering, JNTU Kakinada, Andhra Pradesh, IndiaIn this paper we explore different statistical dependency parsers for parsing Telugu. We consider five popular dependency parsers namely, MaltParser, MSTParser, TurboParser, ZPar and Easy-First Parser. We experiment with different parser and feature settings and show the impact of different settings. We also provide a detailed analysis of the performance of all the parsers on major dependency labels. We report our results on test data of Telugu dependency treebank provided in the ICON 2010 tools contest on Indian languages dependency parsing. We obtain state-of-the art performance of 91.8% in unlabeled attachment score and 70.0% in labeled attachment score. To the best of our knowledge ours is the only work which explored all the five popular dependency parsers and compared the performance under different feature settings for Telugu.http://www.sciencedirect.com/science/article/pii/S1319157815000798Dependency parsingTeluguMSTParserMaltParserTurboParserZPar
collection DOAJ
language English
format Article
sources DOAJ
author B. Venkata Seshu Kumari
Ramisetty Rajeshwara Rao
spellingShingle B. Venkata Seshu Kumari
Ramisetty Rajeshwara Rao
Telugu dependency parsing using different statistical parsers
Journal of King Saud University: Computer and Information Sciences
Dependency parsing
Telugu
MSTParser
MaltParser
TurboParser
ZPar
author_facet B. Venkata Seshu Kumari
Ramisetty Rajeshwara Rao
author_sort B. Venkata Seshu Kumari
title Telugu dependency parsing using different statistical parsers
title_short Telugu dependency parsing using different statistical parsers
title_full Telugu dependency parsing using different statistical parsers
title_fullStr Telugu dependency parsing using different statistical parsers
title_full_unstemmed Telugu dependency parsing using different statistical parsers
title_sort telugu dependency parsing using different statistical parsers
publisher Elsevier
series Journal of King Saud University: Computer and Information Sciences
issn 1319-1578
publishDate 2017-01-01
description In this paper we explore different statistical dependency parsers for parsing Telugu. We consider five popular dependency parsers namely, MaltParser, MSTParser, TurboParser, ZPar and Easy-First Parser. We experiment with different parser and feature settings and show the impact of different settings. We also provide a detailed analysis of the performance of all the parsers on major dependency labels. We report our results on test data of Telugu dependency treebank provided in the ICON 2010 tools contest on Indian languages dependency parsing. We obtain state-of-the art performance of 91.8% in unlabeled attachment score and 70.0% in labeled attachment score. To the best of our knowledge ours is the only work which explored all the five popular dependency parsers and compared the performance under different feature settings for Telugu.
topic Dependency parsing
Telugu
MSTParser
MaltParser
TurboParser
ZPar
url http://www.sciencedirect.com/science/article/pii/S1319157815000798
work_keys_str_mv AT bvenkataseshukumari telugudependencyparsingusingdifferentstatisticalparsers
AT ramisettyrajeshwararao telugudependencyparsingusingdifferentstatisticalparsers
_version_ 1725747004098740224