Summary: | The numerical calculation of three-dimensional unsteady combustion for the combustion chamber of LOX/kerosene high pressure staged combustion rocket engine was carried out. By changing the offset ratio of oxygen mass flow rate in the edge area of the injector face, computational studies were conducted to investigate the effects of non-uniform distribution of oxidizer flow on combustion instability for a liquid-propellant rocket engine. The calculation results show that the offset ratio of oxygen mass flow rate changes the distribution of heat release in the combustion chamber. Within a certain range of offset ratio, the non-uniform distribution degree of oxidizer flow enhances the coupling between the pressure and heat release. As a result, it leads to an increase in the pressure oscillation amplitude in the combustion chamber. However, if the offset ratio is too large, the oxygen-fuel ratio will be too small in some regions, which will reduce coupling between the pressure and heat release and increase the damping of combustion instability.
|