Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks

This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solven...

Full description

Bibliographic Details
Main Authors: Precious Chukwuweike Eze, Cornelius Mduduzi Masuku
Format: Article
Language:English
Published: Elsevier 2018-12-01
Series:Data in Brief
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340918313465
id doaj-a7a38be0149146fd877294aa5b2b765d
record_format Article
spelling doaj-a7a38be0149146fd877294aa5b2b765d2020-11-25T01:46:10ZengElsevierData in Brief2352-34092018-12-012114351444Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networksPrecious Chukwuweike Eze0Cornelius Mduduzi Masuku1Department of Civil and Chemical Engineering, University of South Africa, Private Bag X6, Florida, 1710, South AfricaCorresponding author.; Department of Civil and Chemical Engineering, University of South Africa, Private Bag X6, Florida, 1710, South AfricaThis article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents phenanthrene, 1-hexadecanol, octacosane, hexadecane and tetraethylene glycol at pressures up to 5.5 MPa and temperatures from 293 to 553 K using literature data. The solvents are considered to be potentially significant in the conversion of synthesis gas through gas-slurry processes. Artificial neural networks limited to one hidden layer and up to five neurons in the hidden layer were used to predict the binary plots. Keywords: Artificial neural networks, Fischer–Tropsch reaction, Machine learning, Thermodynamic modeling, Phase equilibriumhttp://www.sciencedirect.com/science/article/pii/S2352340918313465
collection DOAJ
language English
format Article
sources DOAJ
author Precious Chukwuweike Eze
Cornelius Mduduzi Masuku
spellingShingle Precious Chukwuweike Eze
Cornelius Mduduzi Masuku
Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
Data in Brief
author_facet Precious Chukwuweike Eze
Cornelius Mduduzi Masuku
author_sort Precious Chukwuweike Eze
title Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
title_short Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
title_full Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
title_fullStr Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
title_full_unstemmed Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
title_sort supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
publisher Elsevier
series Data in Brief
issn 2352-3409
publishDate 2018-12-01
description This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents phenanthrene, 1-hexadecanol, octacosane, hexadecane and tetraethylene glycol at pressures up to 5.5 MPa and temperatures from 293 to 553 K using literature data. The solvents are considered to be potentially significant in the conversion of synthesis gas through gas-slurry processes. Artificial neural networks limited to one hidden layer and up to five neurons in the hidden layer were used to predict the binary plots. Keywords: Artificial neural networks, Fischer–Tropsch reaction, Machine learning, Thermodynamic modeling, Phase equilibrium
url http://www.sciencedirect.com/science/article/pii/S2352340918313465
work_keys_str_mv AT preciouschukwuweikeeze supportingplotsandtablesonvapourliquidequilibriumpredictionforsynthesisgasconversionusingartificialneuralnetworks
AT corneliusmduduzimasuku supportingplotsandtablesonvapourliquidequilibriumpredictionforsynthesisgasconversionusingartificialneuralnetworks
_version_ 1725020475343503360