Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solven...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-12-01
|
Series: | Data in Brief |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352340918313465 |
id |
doaj-a7a38be0149146fd877294aa5b2b765d |
---|---|
record_format |
Article |
spelling |
doaj-a7a38be0149146fd877294aa5b2b765d2020-11-25T01:46:10ZengElsevierData in Brief2352-34092018-12-012114351444Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networksPrecious Chukwuweike Eze0Cornelius Mduduzi Masuku1Department of Civil and Chemical Engineering, University of South Africa, Private Bag X6, Florida, 1710, South AfricaCorresponding author.; Department of Civil and Chemical Engineering, University of South Africa, Private Bag X6, Florida, 1710, South AfricaThis article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents phenanthrene, 1-hexadecanol, octacosane, hexadecane and tetraethylene glycol at pressures up to 5.5 MPa and temperatures from 293 to 553 K using literature data. The solvents are considered to be potentially significant in the conversion of synthesis gas through gas-slurry processes. Artificial neural networks limited to one hidden layer and up to five neurons in the hidden layer were used to predict the binary plots. Keywords: Artificial neural networks, Fischer–Tropsch reaction, Machine learning, Thermodynamic modeling, Phase equilibriumhttp://www.sciencedirect.com/science/article/pii/S2352340918313465 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Precious Chukwuweike Eze Cornelius Mduduzi Masuku |
spellingShingle |
Precious Chukwuweike Eze Cornelius Mduduzi Masuku Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks Data in Brief |
author_facet |
Precious Chukwuweike Eze Cornelius Mduduzi Masuku |
author_sort |
Precious Chukwuweike Eze |
title |
Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
title_short |
Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
title_full |
Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
title_fullStr |
Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
title_full_unstemmed |
Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
title_sort |
supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
publisher |
Elsevier |
series |
Data in Brief |
issn |
2352-3409 |
publishDate |
2018-12-01 |
description |
This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents phenanthrene, 1-hexadecanol, octacosane, hexadecane and tetraethylene glycol at pressures up to 5.5 MPa and temperatures from 293 to 553 K using literature data. The solvents are considered to be potentially significant in the conversion of synthesis gas through gas-slurry processes. Artificial neural networks limited to one hidden layer and up to five neurons in the hidden layer were used to predict the binary plots. Keywords: Artificial neural networks, Fischer–Tropsch reaction, Machine learning, Thermodynamic modeling, Phase equilibrium |
url |
http://www.sciencedirect.com/science/article/pii/S2352340918313465 |
work_keys_str_mv |
AT preciouschukwuweikeeze supportingplotsandtablesonvapourliquidequilibriumpredictionforsynthesisgasconversionusingartificialneuralnetworks AT corneliusmduduzimasuku supportingplotsandtablesonvapourliquidequilibriumpredictionforsynthesisgasconversionusingartificialneuralnetworks |
_version_ |
1725020475343503360 |