Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia

The groundwater resource contained within the sandy aquifers of the Swan Coastal Plain, south-west Western Australia, provides approximately 60 percent of the drinking water for the metropolitan population of Perth. Rainfall decline over the past three decades coupled with increasing water demand fr...

Full description

Bibliographic Details
Main Authors: W. Dawes, R. Ali, S. Varma, I. Emelyanova, G. Hodgson, D. McFarlane
Format: Article
Language:English
Published: Copernicus Publications 2012-08-01
Series:Hydrology and Earth System Sciences
Online Access:http://www.hydrol-earth-syst-sci.net/16/2709/2012/hess-16-2709-2012.pdf
id doaj-a771e94341c24300b7d90da57cd7310f
record_format Article
spelling doaj-a771e94341c24300b7d90da57cd7310f2020-11-24T23:36:59ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382012-08-011682709272210.5194/hess-16-2709-2012Modelling the effects of climate and land cover change on groundwater recharge in south-west Western AustraliaW. DawesR. AliS. VarmaI. EmelyanovaG. HodgsonD. McFarlaneThe groundwater resource contained within the sandy aquifers of the Swan Coastal Plain, south-west Western Australia, provides approximately 60 percent of the drinking water for the metropolitan population of Perth. Rainfall decline over the past three decades coupled with increasing water demand from a growing population has resulted in falling dam storage and groundwater levels. Projected future changes in climate across south-west Western Australia consistently show a decline in annual rainfall of between 5 and 15 percent. There is expected to be a reduction of diffuse recharge across the Swan Coastal Plain. This study aims to quantify the change in groundwater recharge in response to a range of future climate and land cover patterns across south-west Western Australia. <br><br> Modelling the impact on the groundwater resource of potential climate change was achieved with a dynamically linked unsaturated/saturated groundwater model. A vertical flux manager was used in the unsaturated zone to estimate groundwater recharge using a variety of simple and complex models based on climate, land cover type (e.g. native trees, plantation, cropping, urban, wetland), soil type, and taking into account the groundwater depth. <br><br> In the area centred on the city of Perth, Western Australia, the patterns of recharge change and groundwater level change are not consistent spatially, or consistently downward. In areas with land-use change, recharge rates have increased. Where rainfall has declined sufficiently, recharge rates are decreasing, and where compensating factors combine, there is little change to recharge. In the southwestern part of the study area, the patterns of groundwater recharge are dictated primarily by soil, geology and land cover. In the sand-dominated areas, there is little response to future climate change, because groundwater levels are shallow and much rainfall is rejected recharge. Where the combination of native vegetation and clayey surface soils restricts possible infiltration, recharge rates are very sensitive to reductions in rainfall. In the northern part of the study area, both climate and land cover strongly influence recharge rates. Recharge under native vegetation is minimal and is relatively higher where grazing and pasture systems have been introduced after clearing of native vegetation. In some areas, the recharge values can be reduced to almost zero, even under dryland agriculture, if the future climate becomes very dry.http://www.hydrol-earth-syst-sci.net/16/2709/2012/hess-16-2709-2012.pdf
collection DOAJ
language English
format Article
sources DOAJ
author W. Dawes
R. Ali
S. Varma
I. Emelyanova
G. Hodgson
D. McFarlane
spellingShingle W. Dawes
R. Ali
S. Varma
I. Emelyanova
G. Hodgson
D. McFarlane
Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia
Hydrology and Earth System Sciences
author_facet W. Dawes
R. Ali
S. Varma
I. Emelyanova
G. Hodgson
D. McFarlane
author_sort W. Dawes
title Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia
title_short Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia
title_full Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia
title_fullStr Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia
title_full_unstemmed Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia
title_sort modelling the effects of climate and land cover change on groundwater recharge in south-west western australia
publisher Copernicus Publications
series Hydrology and Earth System Sciences
issn 1027-5606
1607-7938
publishDate 2012-08-01
description The groundwater resource contained within the sandy aquifers of the Swan Coastal Plain, south-west Western Australia, provides approximately 60 percent of the drinking water for the metropolitan population of Perth. Rainfall decline over the past three decades coupled with increasing water demand from a growing population has resulted in falling dam storage and groundwater levels. Projected future changes in climate across south-west Western Australia consistently show a decline in annual rainfall of between 5 and 15 percent. There is expected to be a reduction of diffuse recharge across the Swan Coastal Plain. This study aims to quantify the change in groundwater recharge in response to a range of future climate and land cover patterns across south-west Western Australia. <br><br> Modelling the impact on the groundwater resource of potential climate change was achieved with a dynamically linked unsaturated/saturated groundwater model. A vertical flux manager was used in the unsaturated zone to estimate groundwater recharge using a variety of simple and complex models based on climate, land cover type (e.g. native trees, plantation, cropping, urban, wetland), soil type, and taking into account the groundwater depth. <br><br> In the area centred on the city of Perth, Western Australia, the patterns of recharge change and groundwater level change are not consistent spatially, or consistently downward. In areas with land-use change, recharge rates have increased. Where rainfall has declined sufficiently, recharge rates are decreasing, and where compensating factors combine, there is little change to recharge. In the southwestern part of the study area, the patterns of groundwater recharge are dictated primarily by soil, geology and land cover. In the sand-dominated areas, there is little response to future climate change, because groundwater levels are shallow and much rainfall is rejected recharge. Where the combination of native vegetation and clayey surface soils restricts possible infiltration, recharge rates are very sensitive to reductions in rainfall. In the northern part of the study area, both climate and land cover strongly influence recharge rates. Recharge under native vegetation is minimal and is relatively higher where grazing and pasture systems have been introduced after clearing of native vegetation. In some areas, the recharge values can be reduced to almost zero, even under dryland agriculture, if the future climate becomes very dry.
url http://www.hydrol-earth-syst-sci.net/16/2709/2012/hess-16-2709-2012.pdf
work_keys_str_mv AT wdawes modellingtheeffectsofclimateandlandcoverchangeongroundwaterrechargeinsouthwestwesternaustralia
AT rali modellingtheeffectsofclimateandlandcoverchangeongroundwaterrechargeinsouthwestwesternaustralia
AT svarma modellingtheeffectsofclimateandlandcoverchangeongroundwaterrechargeinsouthwestwesternaustralia
AT iemelyanova modellingtheeffectsofclimateandlandcoverchangeongroundwaterrechargeinsouthwestwesternaustralia
AT ghodgson modellingtheeffectsofclimateandlandcoverchangeongroundwaterrechargeinsouthwestwesternaustralia
AT dmcfarlane modellingtheeffectsofclimateandlandcoverchangeongroundwaterrechargeinsouthwestwesternaustralia
_version_ 1725521356759498752