Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain
<p>Particulate organic nitrates (pON) are an important component of secondary organic aerosol in biogenic-emission-dominant environments and play a critical role in NO<span class="inline-formula"><sub><i>x</i></sub></span> cycles. However, estimati...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-05-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/14/3693/2021/amt-14-3693-2021.pdf |
id |
doaj-a75c4b7e76fb43149d2a8bd3e2ccd4c8 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
W. Xu M. Takeuchi C. Chen C. Chen Y. Qiu Y. Qiu C. Xie C. Xie C. Xie W. Xu N. Ma D. R. Worsnop N. L. Ng N. L. Ng N. L. Ng Y. Sun Y. Sun Y. Sun |
spellingShingle |
W. Xu M. Takeuchi C. Chen C. Chen Y. Qiu Y. Qiu C. Xie C. Xie C. Xie W. Xu N. Ma D. R. Worsnop N. L. Ng N. L. Ng N. L. Ng Y. Sun Y. Sun Y. Sun Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain Atmospheric Measurement Techniques |
author_facet |
W. Xu M. Takeuchi C. Chen C. Chen Y. Qiu Y. Qiu C. Xie C. Xie C. Xie W. Xu N. Ma D. R. Worsnop N. L. Ng N. L. Ng N. L. Ng Y. Sun Y. Sun Y. Sun |
author_sort |
W. Xu |
title |
Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain |
title_short |
Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain |
title_full |
Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain |
title_fullStr |
Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain |
title_full_unstemmed |
Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain |
title_sort |
estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the north china plain |
publisher |
Copernicus Publications |
series |
Atmospheric Measurement Techniques |
issn |
1867-1381 1867-8548 |
publishDate |
2021-05-01 |
description |
<p>Particulate organic nitrates (pON) are an important component of
secondary organic aerosol in biogenic-emission-dominant environments and
play a critical role in NO<span class="inline-formula"><sub><i>x</i></sub></span> cycles. However, estimation of pON has been
a challenge in polluted environments, e.g., North China Plain, with high
concentrations of inorganic nitrate and NO<span class="inline-formula"><sub><i>x</i></sub></span>. Here we developed a method
for estimation of pON from the measurements of high-resolution aerosol mass
spectrometer coupled with a thermodenuder based on the volatility
differences between inorganic nitrate and pON. The results generally
correlated well with those estimated from positive matrix factorization of
combined organic and inorganic mass spectra and from the ratio of NO<span class="inline-formula"><sup>+</sup></span>
to NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="d7f2ee209205b974ae323652b1975b71"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00001.svg" width="8pt" height="15pt" src="amt-14-3693-2021-ie00001.png"/></svg:svg></span></span> (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="afae45a7e2cf6dcf9e0c2a47bbf9be82"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00002.svg" width="8pt" height="14pt" src="amt-14-3693-2021-ie00002.png"/></svg:svg></span></span> ratio), yet they had improvements in reducing
negative values due to the influences of high concentration of inorganic
nitrate and constant NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="75c22ae4d75c7009d9c821fc7e697768"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00003.svg" width="8pt" height="14pt" src="amt-14-3693-2021-ie00003.png"/></svg:svg></span></span> ratio of organic nitrates (<span class="inline-formula"><i>R</i><sub>ON</sub></span>). By
applying this approach to the measurements at an urban (Beijing) and a rural
site (Gucheng) in summer and winter in the North China Plain, we estimated that
the average mass concentrations of NO<span class="inline-formula"><sub>3,org</sub></span> (1.8 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> vs. 1.0 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) and pON to OA (27.5 % vs. 14.8 %) were
higher in summer than in winter in Beijing, indicating more pON formation in
biogenically and anthropogenically mixed environments. In addition, the
average NO<span class="inline-formula"><sub>3,org</sub></span> loading in Gucheng was 1.9 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>, and the
pON at the rural site also showed higher contribution to OA than that in
Beijing during wintertime due to higher primary emissions and gaseous
precursors in Gucheng. In addition, <span class="inline-formula"><i>R</i><sub>ON</sub></span> was determined and showed
considerable differences between day–night and clean–polluted periods,
highlighting the complexity of pON compounds from different chemical
pathways (e.g., OH and NO<span class="inline-formula"><sub>3</sub></span> oxidation) and sources.</p> |
url |
https://amt.copernicus.org/articles/14/3693/2021/amt-14-3693-2021.pdf |
work_keys_str_mv |
AT wxu estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT mtakeuchi estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT cchen estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT cchen estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT yqiu estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT yqiu estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT cxie estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT cxie estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT cxie estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT wxu estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT nma estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT drworsnop estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT nlng estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT nlng estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT nlng estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT ysun estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT ysun estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain AT ysun estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain |
_version_ |
1721432113444552704 |
spelling |
doaj-a75c4b7e76fb43149d2a8bd3e2ccd4c82021-05-21T12:05:24ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-05-01143693370510.5194/amt-14-3693-2021Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China PlainW. Xu0M. Takeuchi1C. Chen2C. Chen3Y. Qiu4Y. Qiu5C. Xie6C. Xie7C. Xie8W. Xu9N. Ma10D. R. Worsnop11N. L. Ng12N. L. Ng13N. L. Ng14Y. Sun15Y. Sun16Y. Sun17State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaSchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USAState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, Chinanow at: State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, ChinaState Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, ChinaInstitute for Environmental and Climate Research, Jinan University, Guangzhou 511443, ChinaAerodyne Research Inc., Billerica, MA 01821, USASchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USASchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USASchool of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USAState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaCenter for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China<p>Particulate organic nitrates (pON) are an important component of secondary organic aerosol in biogenic-emission-dominant environments and play a critical role in NO<span class="inline-formula"><sub><i>x</i></sub></span> cycles. However, estimation of pON has been a challenge in polluted environments, e.g., North China Plain, with high concentrations of inorganic nitrate and NO<span class="inline-formula"><sub><i>x</i></sub></span>. Here we developed a method for estimation of pON from the measurements of high-resolution aerosol mass spectrometer coupled with a thermodenuder based on the volatility differences between inorganic nitrate and pON. The results generally correlated well with those estimated from positive matrix factorization of combined organic and inorganic mass spectra and from the ratio of NO<span class="inline-formula"><sup>+</sup></span> to NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="d7f2ee209205b974ae323652b1975b71"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00001.svg" width="8pt" height="15pt" src="amt-14-3693-2021-ie00001.png"/></svg:svg></span></span> (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="afae45a7e2cf6dcf9e0c2a47bbf9be82"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00002.svg" width="8pt" height="14pt" src="amt-14-3693-2021-ie00002.png"/></svg:svg></span></span> ratio), yet they had improvements in reducing negative values due to the influences of high concentration of inorganic nitrate and constant NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="75c22ae4d75c7009d9c821fc7e697768"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00003.svg" width="8pt" height="14pt" src="amt-14-3693-2021-ie00003.png"/></svg:svg></span></span> ratio of organic nitrates (<span class="inline-formula"><i>R</i><sub>ON</sub></span>). By applying this approach to the measurements at an urban (Beijing) and a rural site (Gucheng) in summer and winter in the North China Plain, we estimated that the average mass concentrations of NO<span class="inline-formula"><sub>3,org</sub></span> (1.8 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> vs. 1.0 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) and pON to OA (27.5 % vs. 14.8 %) were higher in summer than in winter in Beijing, indicating more pON formation in biogenically and anthropogenically mixed environments. In addition, the average NO<span class="inline-formula"><sub>3,org</sub></span> loading in Gucheng was 1.9 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>, and the pON at the rural site also showed higher contribution to OA than that in Beijing during wintertime due to higher primary emissions and gaseous precursors in Gucheng. In addition, <span class="inline-formula"><i>R</i><sub>ON</sub></span> was determined and showed considerable differences between day–night and clean–polluted periods, highlighting the complexity of pON compounds from different chemical pathways (e.g., OH and NO<span class="inline-formula"><sub>3</sub></span> oxidation) and sources.</p>https://amt.copernicus.org/articles/14/3693/2021/amt-14-3693-2021.pdf |