Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain

<p>Particulate organic nitrates (pON) are an important component of secondary organic aerosol in biogenic-emission-dominant environments and play a critical role in NO<span class="inline-formula"><sub><i>x</i></sub></span> cycles. However, estimati...

Full description

Bibliographic Details
Main Authors: W. Xu, M. Takeuchi, C. Chen, Y. Qiu, C. Xie, N. Ma, D. R. Worsnop, N. L. Ng, Y. Sun
Format: Article
Language:English
Published: Copernicus Publications 2021-05-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/3693/2021/amt-14-3693-2021.pdf
id doaj-a75c4b7e76fb43149d2a8bd3e2ccd4c8
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author W. Xu
M. Takeuchi
C. Chen
C. Chen
Y. Qiu
Y. Qiu
C. Xie
C. Xie
C. Xie
W. Xu
N. Ma
D. R. Worsnop
N. L. Ng
N. L. Ng
N. L. Ng
Y. Sun
Y. Sun
Y. Sun
spellingShingle W. Xu
M. Takeuchi
C. Chen
C. Chen
Y. Qiu
Y. Qiu
C. Xie
C. Xie
C. Xie
W. Xu
N. Ma
D. R. Worsnop
N. L. Ng
N. L. Ng
N. L. Ng
Y. Sun
Y. Sun
Y. Sun
Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain
Atmospheric Measurement Techniques
author_facet W. Xu
M. Takeuchi
C. Chen
C. Chen
Y. Qiu
Y. Qiu
C. Xie
C. Xie
C. Xie
W. Xu
N. Ma
D. R. Worsnop
N. L. Ng
N. L. Ng
N. L. Ng
Y. Sun
Y. Sun
Y. Sun
author_sort W. Xu
title Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain
title_short Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain
title_full Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain
title_fullStr Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain
title_full_unstemmed Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain
title_sort estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the north china plain
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2021-05-01
description <p>Particulate organic nitrates (pON) are an important component of secondary organic aerosol in biogenic-emission-dominant environments and play a critical role in NO<span class="inline-formula"><sub><i>x</i></sub></span> cycles. However, estimation of pON has been a challenge in polluted environments, e.g., North China Plain, with high concentrations of inorganic nitrate and NO<span class="inline-formula"><sub><i>x</i></sub></span>. Here we developed a method for estimation of pON from the measurements of high-resolution aerosol mass spectrometer coupled with a thermodenuder based on the volatility differences between inorganic nitrate and pON. The results generally correlated well with those estimated from positive matrix factorization of combined organic and inorganic mass spectra and from the ratio of NO<span class="inline-formula"><sup>+</sup></span> to NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="d7f2ee209205b974ae323652b1975b71"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00001.svg" width="8pt" height="15pt" src="amt-14-3693-2021-ie00001.png"/></svg:svg></span></span> (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="afae45a7e2cf6dcf9e0c2a47bbf9be82"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00002.svg" width="8pt" height="14pt" src="amt-14-3693-2021-ie00002.png"/></svg:svg></span></span> ratio), yet they had improvements in reducing negative values due to the influences of high concentration of inorganic nitrate and constant NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="75c22ae4d75c7009d9c821fc7e697768"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00003.svg" width="8pt" height="14pt" src="amt-14-3693-2021-ie00003.png"/></svg:svg></span></span> ratio of organic nitrates (<span class="inline-formula"><i>R</i><sub>ON</sub></span>). By applying this approach to the measurements at an urban (Beijing) and a rural site (Gucheng) in summer and winter in the North China Plain, we estimated that the average mass concentrations of NO<span class="inline-formula"><sub>3,org</sub></span> (1.8 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> vs. 1.0 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) and pON to OA (27.5 % vs. 14.8 %) were higher in summer than in winter in Beijing, indicating more pON formation in biogenically and anthropogenically mixed environments. In addition, the average NO<span class="inline-formula"><sub>3,org</sub></span> loading in Gucheng was 1.9 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>, and the pON at the rural site also showed higher contribution to OA than that in Beijing during wintertime due to higher primary emissions and gaseous precursors in Gucheng. In addition, <span class="inline-formula"><i>R</i><sub>ON</sub></span> was determined and showed considerable differences between day–night and clean–polluted periods, highlighting the complexity of pON compounds from different chemical pathways (e.g., OH and NO<span class="inline-formula"><sub>3</sub></span> oxidation) and sources.</p>
url https://amt.copernicus.org/articles/14/3693/2021/amt-14-3693-2021.pdf
work_keys_str_mv AT wxu estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT mtakeuchi estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT cchen estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT cchen estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT yqiu estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT yqiu estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT cxie estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT cxie estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT cxie estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT wxu estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT nma estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT drworsnop estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT nlng estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT nlng estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT nlng estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT ysun estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT ysun estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
AT ysun estimationofparticulateorganicnitratesfromthermodenuderaerosolmassspectrometermeasurementsinthenorthchinaplain
_version_ 1721432113444552704
spelling doaj-a75c4b7e76fb43149d2a8bd3e2ccd4c82021-05-21T12:05:24ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-05-01143693370510.5194/amt-14-3693-2021Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China PlainW. Xu0M. Takeuchi1C. Chen2C. Chen3Y. Qiu4Y. Qiu5C. Xie6C. Xie7C. Xie8W. Xu9N. Ma10D. R. Worsnop11N. L. Ng12N. L. Ng13N. L. Ng14Y. Sun15Y. Sun16Y. Sun17State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaSchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USAState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, Chinanow at: State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, ChinaState Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, ChinaInstitute for Environmental and Climate Research, Jinan University, Guangzhou 511443, ChinaAerodyne Research Inc., Billerica, MA 01821, USASchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USASchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USASchool of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USAState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaCenter for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China<p>Particulate organic nitrates (pON) are an important component of secondary organic aerosol in biogenic-emission-dominant environments and play a critical role in NO<span class="inline-formula"><sub><i>x</i></sub></span> cycles. However, estimation of pON has been a challenge in polluted environments, e.g., North China Plain, with high concentrations of inorganic nitrate and NO<span class="inline-formula"><sub><i>x</i></sub></span>. Here we developed a method for estimation of pON from the measurements of high-resolution aerosol mass spectrometer coupled with a thermodenuder based on the volatility differences between inorganic nitrate and pON. The results generally correlated well with those estimated from positive matrix factorization of combined organic and inorganic mass spectra and from the ratio of NO<span class="inline-formula"><sup>+</sup></span> to NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="d7f2ee209205b974ae323652b1975b71"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00001.svg" width="8pt" height="15pt" src="amt-14-3693-2021-ie00001.png"/></svg:svg></span></span> (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="afae45a7e2cf6dcf9e0c2a47bbf9be82"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00002.svg" width="8pt" height="14pt" src="amt-14-3693-2021-ie00002.png"/></svg:svg></span></span> ratio), yet they had improvements in reducing negative values due to the influences of high concentration of inorganic nitrate and constant NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="75c22ae4d75c7009d9c821fc7e697768"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-3693-2021-ie00003.svg" width="8pt" height="14pt" src="amt-14-3693-2021-ie00003.png"/></svg:svg></span></span> ratio of organic nitrates (<span class="inline-formula"><i>R</i><sub>ON</sub></span>). By applying this approach to the measurements at an urban (Beijing) and a rural site (Gucheng) in summer and winter in the North China Plain, we estimated that the average mass concentrations of NO<span class="inline-formula"><sub>3,org</sub></span> (1.8 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> vs. 1.0 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) and pON to OA (27.5 % vs. 14.8 %) were higher in summer than in winter in Beijing, indicating more pON formation in biogenically and anthropogenically mixed environments. In addition, the average NO<span class="inline-formula"><sub>3,org</sub></span> loading in Gucheng was 1.9 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>, and the pON at the rural site also showed higher contribution to OA than that in Beijing during wintertime due to higher primary emissions and gaseous precursors in Gucheng. In addition, <span class="inline-formula"><i>R</i><sub>ON</sub></span> was determined and showed considerable differences between day–night and clean–polluted periods, highlighting the complexity of pON compounds from different chemical pathways (e.g., OH and NO<span class="inline-formula"><sub>3</sub></span> oxidation) and sources.</p>https://amt.copernicus.org/articles/14/3693/2021/amt-14-3693-2021.pdf