Empirical Models Applied to Distributed Energy Resources—An Analysis in the Light of Regulatory Aspects

According to the International Electrotechnical Commission (IEC) 61853 standard, the power rating of photovoltaic (PV) modules must be done on a measurement matrix that broadly covers the ranges of operating conditions encountered in the field. These results are becoming more frequent in recent modu...

Full description

Bibliographic Details
Main Authors: Lucas Deotti, Ivo Silva Júnior, Leonardo Honório, André Marcato
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/2/326
Description
Summary:According to the International Electrotechnical Commission (IEC) 61853 standard, the power rating of photovoltaic (PV) modules must be done on a measurement matrix that broadly covers the ranges of operating conditions encountered in the field. These results are becoming more frequent in recent module datasheets. This paper investigates the effectiveness of applying existing empirical PV performance models while using a matrix with 18 operational records, similar to the 22 that were recommended by IEC 61853, as an alternative to the thousands of records that are conventionally used to determine their coefficients. A review of fifteen empirical models is presented and the procedures for determining their coefficients are discussed. In order to validate them, they were applied to data from fourteen PV modules, which remained installed outdoors for about one year, in three locations with distinct climate types. Although the uncertainties that were obtained with the proposed approach, as compared to the conventional one, are about 1% higher for xSi and CdTe modules, and somewhat higher for mSi and CIGS modules, the total uncertainties were only around 5%, a value that is quite adequate for evaluating module performance. Moreover, these uncertainties were from two to five times smaller than those that were obtained by the method that was recommended by IEC 61853 for this purpose.
ISSN:1996-1073