Insightful Analysis of Phenomena Arising at the Metal|Polymer Interphase of Au-Ti Based Non-Enzymatic Glucose Sensitive Electrodes Covered by Nafion

This paper focuses on the examination of glucose oxidation processes at an electrode material composed of gold nanoparticles embedded in a titanium template. Three different conditions were investigated: the chloride content in the electrolyte, its ionic conductivity and the presence of a Nafion coa...

Full description

Bibliographic Details
Main Authors: Adrian Olejnik, Jakub Karczewski, Anna Dołęga, Katarzyna Siuzdak, Katarzyna Grochowska
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/10/9/810
Description
Summary:This paper focuses on the examination of glucose oxidation processes at an electrode material composed of gold nanoparticles embedded in a titanium template. Three different conditions were investigated: the chloride content in the electrolyte, its ionic conductivity and the presence of a Nafion coating. The impact of the provided environment on the oxidation reaction was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Two models, namely: chemisorption and incipient hydrous oxide/adatom mediator (IHOAM), were applied to explain the complex voltammetric responses of the electrodes exposed to solutions of varied glucose concentrations. Three different phenomena were observed for the studied cases. The first is related to the transition between the dominant mechanism of glucose oxidation from the IHOAM model to the chemisorption model. This happens only in an electrolyte containing chlorides after exceeding a certain amount of glucose. The second effect exhibits a bottleneck nature resulting from the presence of Nafion on the electrode’s surface. In this case, mass transport through the semi-permeable polymer is hampered, due to the blocking of channels and physical internal cross-linking. This leads to a preconcentration of glucose inside the pores resulting in an increase in both the material sensitivity and the linear range of the calibration curve. Lastly, the third effect is manifested in a low concentration of the supporting electrolyte. It is based on the fact that mass transport of hydroxyl ions is governed not only by diffusion, but also by migration. These three effects have a tremendous impact on the glucose oxidation mechanism and reveal its very complex nature.
ISSN:2079-6412