DynDL: Scheduling Data-Locality-Aware Tasks with Dynamic Data Transfer Cost for Multicore-Server-Based Big Data Clusters
Network bandwidth is a scarce resource in big data environments, so data locality is a fundamental problem for data-parallel frameworks such as Hadoop and Spark. This problem is exacerbated in multicore server-based clusters, where multiple tasks running on the same server compete for the server&...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/8/11/2216 |