The Reorganization of Insular Subregions in Individuals with Below-Level Neuropathic Pain following Incomplete Spinal Cord Injury

Objective. To investigate the reorganization of insular subregions in individuals suffering from neuropathic pain (NP) after incomplete spinal cord injury (ISCI) and further to disclose the underlying mechanism of NP. Method. The 3D high-resolution T1-weighted structural images and resting-state fun...

Full description

Bibliographic Details
Main Authors: Xuejing Li, Ling Wang, Qian Chen, Yongsheng Hu, Jubao Du, Xin Chen, Weimin Zheng, Jie Lu, Nan Chen
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Neural Plasticity
Online Access:http://dx.doi.org/10.1155/2020/2796571
Description
Summary:Objective. To investigate the reorganization of insular subregions in individuals suffering from neuropathic pain (NP) after incomplete spinal cord injury (ISCI) and further to disclose the underlying mechanism of NP. Method. The 3D high-resolution T1-weighted structural images and resting-state functional magnetic resonance imaging (rs-fMRI) of all individuals were obtained using a 3.0 Tesla MRI system. A comparative analysis of structure and function connectivity (FC) with insular subareas as seeds in 10 ISCI individuals with below-level NP (ISCI-P), 11 ISCI individuals without NP (ISCI-N), and 25 healthy controls (HCs) was conducted. Associations between the structural and functional alteration of insula subregions and visual analog scale (VAS) scores were analyzed using the Pearson correlation in SPSS 20. Results. Compared with ISCI-N patients, when the left posterior insula as the seed, ISCI-P showed increased FC in right cerebellum VIIb and cerebellum VIII, Brodmann 37 (BA 37). When the left ventral anterior insula as the seed, ISCI-P indicated enhanced FC in right BA18 compared with ISCI-N patients. These increased FCs positively correlated with VAS scores. Relative to HCs, ISCI-P presented increased FC in the left hippocampus when the left dorsal anterior insula was determined as the seed. There was no statistical difference in the volume of insula subregions among the three groups. Conclusion. Our study indicated that distinctive patterns of FC in each subregion of insula suggest that the insular subareas participate in the NP processing through different FC following ISCI. Further, insula subregions could serve as a therapeutic target for NP following ISCI.
ISSN:2090-5904
1687-5443