An improved version of a result of Chandra, Li, and Rosalsky
Abstract For an array of rowwise pairwise negative quadrant dependent, mean 0 random variables, Chandra, Li, and Rosalsky provided conditions under which weighted averages converge in L1 $\mathscr{L}_{1}$ to 0. The Chandra, Li, and Rosalsky result is extended to Lr $\mathscr{L}_{r}$ convergence ( 1≤...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-02-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-019-1980-3 |
Summary: | Abstract For an array of rowwise pairwise negative quadrant dependent, mean 0 random variables, Chandra, Li, and Rosalsky provided conditions under which weighted averages converge in L1 $\mathscr{L}_{1}$ to 0. The Chandra, Li, and Rosalsky result is extended to Lr $\mathscr{L}_{r}$ convergence ( 1≤r<2 $1\leq r<2$) and is shown to hold under weaker conditions by applying a mean convergence result of Sung and an inequality of Adler, Rosalsky, and Taylor. |
---|---|
ISSN: | 1029-242X |