Interoperable Platform to Report Polymerase Chain Reaction SARS-CoV-2 Tests From Laboratories to the Chilean Government: Development and Implementation Study

BackgroundTesting, traceability, and isolation actions are a central strategy defined by the World Health Organization to contain the COVID-19 pandemic. In this sense, the countries have had difficulties in counting the number of people infected with SARS-CoV-2. Errors in rep...

Full description

Bibliographic Details
Main Authors: Guinez-Molinos, Sergio, Andrade, José María, Medina Negrete, Alejandro, Espinoza Vidal, Sonia, Rios, Elvis
Format: Article
Language:English
Published: JMIR Publications 2021-01-01
Series:JMIR Medical Informatics
Online Access:http://medinform.jmir.org/2021/1/e25149/
Description
Summary:BackgroundTesting, traceability, and isolation actions are a central strategy defined by the World Health Organization to contain the COVID-19 pandemic. In this sense, the countries have had difficulties in counting the number of people infected with SARS-CoV-2. Errors in reporting results are a common factor, as well as the lack of interoperability between laboratories and governments. Approaches aimed at sending spreadsheets via email expose patients’ privacy and have increased the probability of errors due to retyping, which generates a delay in the notification of results. ObjectiveThis study aims to design and develop an interoperable platform to report polymerase chain reaction (PCR) SARS-CoV-2 tests from laboratories to the Chilean government. MethodsThe methodology to design and develop the interoperable platform was comprised of six well-structured stages: (1) creation of a minimum data set for PCR SARS-CoV-2 tests, (2) modeling processes and end points where institutions interchange information, (3) standards and interoperability design, (4) software development, (5) software testing, and (6) software implementation. ResultsThe interoperable Fast Healthcare Interoperability Resources (FHIR) platform to report PCR SARS-CoV-2 tests from laboratories to the Chilean government was successfully implemented. The platform was designed, developed, tested, and implemented following a structured methodology. The platform’s performance to 1000 requests resulted in a response time of 240 milliseconds, throughput of 28.3 requests per second, and process management time of 131 milliseconds. The security was assured through a private network exclusive to the Ministry of Health to ensure confidentiality and integrity. The authorization and authentication of laboratories were implemented with a JavaScript Object Notation Web Token. All the PCR SARS-CoV-2 tests were accessible through an application programming interface gateway with valid credentials and the right access control list. ConclusionsThe platform was implemented and is currently being used by UC Christus Laboratory. The platform is secure. It was tested adequately for confidentiality, secure authorization, authentication, and message integrity. This platform simplifies the reporting of PCR SARS-CoV-2 tests and reduces the time and probability of mistakes in counting positive cases. The interoperable solution with FHIR is working successfully and is open for the community, laboratories, and any institution that needs to report PCR SARS-CoV-2 tests.
ISSN:2291-9694