Klasifikasi Otomatis Motif Tekstil Menggunakan Support Vector Machine Multi Kelas

Tekstur merupakan pola atau motif tertentu yang tersusun secara berulang-ulang pada citra. Tekstur mudah dikenali/dikelompokkan oleh manusia, tetapi sulit bagi mesin. Klasifikasi tekstur secara otomatis berguna dan dibutuhkan pada banyak bidang seperti industri tekstil, pendaratan pesawat otomatis,...

Full description

Bibliographic Details
Main Authors: Ramadhani Ramadhani, Fitri Arnia, Rusdha Muharar
Format: Article
Language:Indonesian
Published: University of Brawijaya 2020-02-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:http://jtiik.ub.ac.id/index.php/jtiik/article/view/1428
Description
Summary:Tekstur merupakan pola atau motif tertentu yang tersusun secara berulang-ulang pada citra. Tekstur mudah dikenali/dikelompokkan oleh manusia, tetapi sulit bagi mesin. Klasifikasi tekstur secara otomatis berguna dan dibutuhkan pada banyak bidang seperti industri tekstil, pendaratan pesawat otomatis, fotografi dan seni. Pada industri tekstil, klasifikasi tekstur otomatis dapat meningkatkan efisiensi proses desain motif. Motif tekstil terdiri dari banyak kelompok, sehingga diperlukan metode klasifikasi multi kelas untuk mengelompokkan motif-motif tersebut. Artikel ini memaparkan kinerja tiga metode Support Vector Machine (SVM) multi kelas: One Against One (OAO), Directed Acyclic Graph (DAG) dan One Against All (OAA) pada klasifikasi motif dari citra tekstil, dimana Wavelet Gabor digunakan sebagai pengekstraksi fitur. Kinerja SVM diukur berdasarkan parameter akurasi dan fitur Gabor diekstraksi dengan skala dan orientasi yang berbeda. Tujuan penelitian ini adalah menentukan kinerja SVM dan pengaruh jumlah skala dan orientasi Gabor yang digunakan pada klasifikasi motif tekstil. Pada simulasi digunakan 120 citra tekstil yang terbagi menjadi tiga kategori motif: bunga, kotak dan polkadot. Akurasi pengelompokan SVM mencapai kisaran 90%-100%, bahkan untuk citra yang terpotong. Pengujian dengan k-fold validation menunjukkan bahwa SVM DAG lebih baik daripada SVM OAO dan SVM OAA, dengan akurasi mencapai 78%.   Abstract Texture is a repetition of a specific pattern concatenation in an image. The Texture can be defined as a repetition of pattern in an image.  The texture is easy for the human to classify, but it is not easy for a machine. Automatic texture classification is useful and required in many fields such as textile industry, automatic aircraft landing, photography and art. In the textile industry, automatic texture classification can enhance the efficiency of motif designing process. The textile motif is various and should be grouped into more than two classes; therefore a multiclass classification is required. This article discusses the performance of multiclass Support Vector Machine (SVM): One Against One (OAO), Directed Acyclic Graph (DAG) and One Against All (OAA) in classifying textile motifs, in which the Gabor Filter was used to extract the texture features. The SVM performance was measured in terms of accuracy, while the Gabor features were extracted in a different combination of scales and orientations. The purpose of the work is to measure the SVM performance and determine the effect of using various Gabor scales and orientations in textile motifs classification. We used 120 textile images with three motifs: flower, boxes and polka dot. The SVM accuracy of 90%-100% was achieved; even for cropped textile images. Using the k-fold validation, the accuracy of SVM DAG was 78%, higher than those of SVM OAO and SVM OAA
ISSN:2355-7699
2528-6579