Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice

Alkaline sphingomyelinase (alk-SMase) hydrolyses sphingomyelin (SM) to ceramide in the gut. To evaluate the physiological importance of the enzyme, we generated alk-SMase knockout (KO) mice by the Cre-recombinase-Locus of X-over P1(Cre-LoxP) system and studied SM digestion. Both wild-type (WT) and K...

Full description

Bibliographic Details
Main Authors: Yao Zhang, Yajun Cheng, Gert H. Hansen, Lise-Lotte Niels-Christiansen, Frank Koentgen, Lena Ohlsson, Åke Nilsson, Rui-Dong Duan
Format: Article
Language:English
Published: Elsevier 2011-04-01
Series:Journal of Lipid Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0022227520409101
Description
Summary:Alkaline sphingomyelinase (alk-SMase) hydrolyses sphingomyelin (SM) to ceramide in the gut. To evaluate the physiological importance of the enzyme, we generated alk-SMase knockout (KO) mice by the Cre-recombinase-Locus of X-over P1(Cre-LoxP) system and studied SM digestion. Both wild-type (WT) and KO mice were fed 3H-palmitic acid labeled SM together with milk SM by gavage. The lipids in intestinal content, intestinal tissues, serum, and liver were analyzed by TLC. In KO mice, nondigested 3H-SM in the intestinal content increased by 6-fold and the formation of 3H-ceramide decreased markedly, resulting in 98% reduction of 3H-ceramide/3H-SM ratio 1 h after gavage. The absorbed 3H-palmitic acid portion was decreased by 95%. After 3 h, a small increase in 3H-ceramide was identified in distal intestine in KO mice. In feces, 3H-SM was increased by 243% and ceramide decreased by 74% in the KO mice. The KO mice also showed significantly decreased radioactivity in liver and serum. Furthermore, alkaline phosphatase activity in the mucosa was reduced by 50% and histological comparison of two female littermates preliminarily suggested mucosal hypertrophy in KO mice. This study provides definite proof for crucial roles of alk-SMase in SM digestion and points to possible roles in regulating mucosal growth and alkaline phosphatase function.
ISSN:0022-2275