Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
In this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator, we are interested in the corresponding eigenv...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-02-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/2/182 |
id |
doaj-a6a9041de3e3423d8572fb6c9981815e |
---|---|
record_format |
Article |
spelling |
doaj-a6a9041de3e3423d8572fb6c9981815e2020-11-25T01:27:38ZengMDPI AGMathematics2227-73902020-02-018218210.3390/math8020182math8020182Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal PolynomialsJuan F. Mañas-Mañas0Juan J. Moreno-Balcázar1Richard Wellman2Departamento de Matemáticas, Universidad de Almería, 04120 Almería, SpainDepartamento de Matemáticas, Universidad de Almería, 04120 Almería, SpainDepartment of Mathematics & Computer Science, Colorado College, CO 80903, USAIn this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator, we are interested in the corresponding eigenvalues, more exactly, in their asymptotic behavior. Thus, we can determine a limit value which links this asymptotic behavior and the uniform norm of the orthonormal polynomials in a logarithmic scale. This value appears in the theory of reproducing kernel Hilbert spaces. On the other hand, we tackle a more general case than the one considered in the literature previously.https://www.mdpi.com/2227-7390/8/2/182sobolev orthogonal polynomialsjacobi weightasymptotics |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Juan F. Mañas-Mañas Juan J. Moreno-Balcázar Richard Wellman |
spellingShingle |
Juan F. Mañas-Mañas Juan J. Moreno-Balcázar Richard Wellman Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials Mathematics sobolev orthogonal polynomials jacobi weight asymptotics |
author_facet |
Juan F. Mañas-Mañas Juan J. Moreno-Balcázar Richard Wellman |
author_sort |
Juan F. Mañas-Mañas |
title |
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials |
title_short |
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials |
title_full |
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials |
title_fullStr |
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials |
title_full_unstemmed |
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials |
title_sort |
eigenvalue problem for discrete jacobi–sobolev orthogonal polynomials |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-02-01 |
description |
In this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator, we are interested in the corresponding eigenvalues, more exactly, in their asymptotic behavior. Thus, we can determine a limit value which links this asymptotic behavior and the uniform norm of the orthonormal polynomials in a logarithmic scale. This value appears in the theory of reproducing kernel Hilbert spaces. On the other hand, we tackle a more general case than the one considered in the literature previously. |
topic |
sobolev orthogonal polynomials jacobi weight asymptotics |
url |
https://www.mdpi.com/2227-7390/8/2/182 |
work_keys_str_mv |
AT juanfmanasmanas eigenvalueproblemfordiscretejacobisobolevorthogonalpolynomials AT juanjmorenobalcazar eigenvalueproblemfordiscretejacobisobolevorthogonalpolynomials AT richardwellman eigenvalueproblemfordiscretejacobisobolevorthogonalpolynomials |
_version_ |
1725104047854190592 |