Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials

In this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator, we are interested in the corresponding eigenv...

Full description

Bibliographic Details
Main Authors: Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar, Richard Wellman
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/2/182
id doaj-a6a9041de3e3423d8572fb6c9981815e
record_format Article
spelling doaj-a6a9041de3e3423d8572fb6c9981815e2020-11-25T01:27:38ZengMDPI AGMathematics2227-73902020-02-018218210.3390/math8020182math8020182Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal PolynomialsJuan F. Mañas-Mañas0Juan J. Moreno-Balcázar1Richard Wellman2Departamento de Matemáticas, Universidad de Almería, 04120 Almería, SpainDepartamento de Matemáticas, Universidad de Almería, 04120 Almería, SpainDepartment of Mathematics & Computer Science, Colorado College, CO 80903, USAIn this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator, we are interested in the corresponding eigenvalues, more exactly, in their asymptotic behavior. Thus, we can determine a limit value which links this asymptotic behavior and the uniform norm of the orthonormal polynomials in a logarithmic scale. This value appears in the theory of reproducing kernel Hilbert spaces. On the other hand, we tackle a more general case than the one considered in the literature previously.https://www.mdpi.com/2227-7390/8/2/182sobolev orthogonal polynomialsjacobi weightasymptotics
collection DOAJ
language English
format Article
sources DOAJ
author Juan F. Mañas-Mañas
Juan J. Moreno-Balcázar
Richard Wellman
spellingShingle Juan F. Mañas-Mañas
Juan J. Moreno-Balcázar
Richard Wellman
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
Mathematics
sobolev orthogonal polynomials
jacobi weight
asymptotics
author_facet Juan F. Mañas-Mañas
Juan J. Moreno-Balcázar
Richard Wellman
author_sort Juan F. Mañas-Mañas
title Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
title_short Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
title_full Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
title_fullStr Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
title_full_unstemmed Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
title_sort eigenvalue problem for discrete jacobi–sobolev orthogonal polynomials
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-02-01
description In this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator, we are interested in the corresponding eigenvalues, more exactly, in their asymptotic behavior. Thus, we can determine a limit value which links this asymptotic behavior and the uniform norm of the orthonormal polynomials in a logarithmic scale. This value appears in the theory of reproducing kernel Hilbert spaces. On the other hand, we tackle a more general case than the one considered in the literature previously.
topic sobolev orthogonal polynomials
jacobi weight
asymptotics
url https://www.mdpi.com/2227-7390/8/2/182
work_keys_str_mv AT juanfmanasmanas eigenvalueproblemfordiscretejacobisobolevorthogonalpolynomials
AT juanjmorenobalcazar eigenvalueproblemfordiscretejacobisobolevorthogonalpolynomials
AT richardwellman eigenvalueproblemfordiscretejacobisobolevorthogonalpolynomials
_version_ 1725104047854190592