Dyons, Superstrings, and Wormholes: Exact Solutions of the Non-Abelian Dirac-Born-Infeld Action

We construct dyon solutions on coincident D4-branes, obtained by applying T-duality transformations to type I SO(32) superstring theory in 10 dimensions. These solutions, which are exact, are obtained from an action comprising the non-Abelian Dirac-Born-Infeld action and a Wess-Zumino-like action. W...

Full description

Bibliographic Details
Main Author: Edward A. Olszewski
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2015/960345
Description
Summary:We construct dyon solutions on coincident D4-branes, obtained by applying T-duality transformations to type I SO(32) superstring theory in 10 dimensions. These solutions, which are exact, are obtained from an action comprising the non-Abelian Dirac-Born-Infeld action and a Wess-Zumino-like action. When one spatial dimension of the D4-branes is taken to be vanishingly small, the dyons are analogous to the ’t Hooft/Polyakov monopole residing in a 3+1-dimensional spacetime, where the component of the Yang-Mills potential transforming as a Lorentz scalar is reinterpreted as a Higgs boson transforming in the adjoint representation of the gauge group. Applying a T-duality transformation to the vanishingly small spatial dimension, we obtain a collection of D3-branes, not all of which are coincident. Two of the D3-branes, distinct from the others, acquire intrinsic, finite curvature and are connected by a wormhole. The dyons possess electric and magnetic charges whose values on each D3-brane are the negative of one another. The gravitational effects, which arise after the T-duality transformation, occur despite the fact that the action of the system does not explicitly include the gravitational interaction. These solutions provide a simple example of the subtle relationship between the Yang-Mills and gravitational interactions, that is, gauge/gravity duality.
ISSN:1687-7357
1687-7365