Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian

Abstract We consider the existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear difference equation { − ∇ [ ϕ ( △ u ( t ) ) ] = λ a ( t , u ( t ) ) + μ b ( t , u ( t ) ) , t ∈ T , u ( 1 ) = u ( N ) = 0 , $$ \textstyle\begin{cases} -\nabla [\phi (\triangle u(t))...

Full description

Bibliographic Details
Main Authors: Xiaoxiao Su, Ruyun Ma
Format: Article
Language:English
Published: SpringerOpen 2020-12-01
Series:Advances in Difference Equations
Subjects:
Online Access:https://doi.org/10.1186/s13662-020-03135-5
id doaj-a6940ddc3a83491fba1cc0cac6f534eb
record_format Article
spelling doaj-a6940ddc3a83491fba1cc0cac6f534eb2020-12-06T12:48:32ZengSpringerOpenAdvances in Difference Equations1687-18472020-12-012020111810.1186/s13662-020-03135-5Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-LaplacianXiaoxiao Su0Ruyun Ma1Department of Mathematics, Northwest Normal UniversityDepartment of Mathematics, Northwest Normal UniversityAbstract We consider the existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear difference equation { − ∇ [ ϕ ( △ u ( t ) ) ] = λ a ( t , u ( t ) ) + μ b ( t , u ( t ) ) , t ∈ T , u ( 1 ) = u ( N ) = 0 , $$ \textstyle\begin{cases} -\nabla [\phi (\triangle u(t))]=\lambda a(t,u(t))+\mu b(t,u(t)), \quad t\in \mathbb{T}, \\ u(1)=u(N)=0, \end{cases} $$ where λ , μ ≥ 0 $\lambda ,\mu \geq 0$ , T = { 2 , … , N − 1 } $\mathbb{T}=\{2,\ldots ,N-1\}$ with N > 3 $N>3$ , ϕ ( s ) = s / 1 − s 2 $\phi (s)=s/\sqrt{1-s^{2}}$ . The function f : = λ a ( t , s ) + μ b ( t , s ) $f:=\lambda a(t,s)+\mu b(t,s)$ is either sublinear, or superlinear, or sub-superlinear near s = 0 $s=0$ . Applying the topological method, we prove the existence of either one or two, or three positive solutions.https://doi.org/10.1186/s13662-020-03135-5Discrete ϕ-LaplacianPositive solutionsMultiplicityTopological method
collection DOAJ
language English
format Article
sources DOAJ
author Xiaoxiao Su
Ruyun Ma
spellingShingle Xiaoxiao Su
Ruyun Ma
Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian
Advances in Difference Equations
Discrete ϕ-Laplacian
Positive solutions
Multiplicity
Topological method
author_facet Xiaoxiao Su
Ruyun Ma
author_sort Xiaoxiao Su
title Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian
title_short Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian
title_full Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian
title_fullStr Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian
title_full_unstemmed Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian
title_sort multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-laplacian
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1847
publishDate 2020-12-01
description Abstract We consider the existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear difference equation { − ∇ [ ϕ ( △ u ( t ) ) ] = λ a ( t , u ( t ) ) + μ b ( t , u ( t ) ) , t ∈ T , u ( 1 ) = u ( N ) = 0 , $$ \textstyle\begin{cases} -\nabla [\phi (\triangle u(t))]=\lambda a(t,u(t))+\mu b(t,u(t)), \quad t\in \mathbb{T}, \\ u(1)=u(N)=0, \end{cases} $$ where λ , μ ≥ 0 $\lambda ,\mu \geq 0$ , T = { 2 , … , N − 1 } $\mathbb{T}=\{2,\ldots ,N-1\}$ with N > 3 $N>3$ , ϕ ( s ) = s / 1 − s 2 $\phi (s)=s/\sqrt{1-s^{2}}$ . The function f : = λ a ( t , s ) + μ b ( t , s ) $f:=\lambda a(t,s)+\mu b(t,s)$ is either sublinear, or superlinear, or sub-superlinear near s = 0 $s=0$ . Applying the topological method, we prove the existence of either one or two, or three positive solutions.
topic Discrete ϕ-Laplacian
Positive solutions
Multiplicity
Topological method
url https://doi.org/10.1186/s13662-020-03135-5
work_keys_str_mv AT xiaoxiaosu multiplepositivesolutionsofsecondordernonlineardifferenceequationswithdiscretesingularphlaplacian
AT ruyunma multiplepositivesolutionsofsecondordernonlineardifferenceequationswithdiscretesingularphlaplacian
_version_ 1724398659175448576