Plasma concentrations and placental immunostaining of interleukin-10 and tumornecrosis factor-α as predictors of alterations in the embryo-fetal organism and the placental development of diabetic rats

Interleukin-10 (IL-10) appears to be the key cytokine for the maintenance of pregnancy and inhibits the secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α). However, there are no studies evaluating the profile of these cytokines in diabetic rat models. Thus,...

Full description

Bibliographic Details
Main Authors: Y.K. Sinzato, D.C. Damasceno, R. Laufer-Amorim, M.M.P. Rodrigues, M. Oshiiwa, K.N. Taylor, M.V.C. Rudge
Format: Article
Language:English
Published: Associação Brasileira de Divulgação Científica 2011-03-01
Series:Brazilian Journal of Medical and Biological Research
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2011000300005
Description
Summary:Interleukin-10 (IL-10) appears to be the key cytokine for the maintenance of pregnancy and inhibits the secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α). However, there are no studies evaluating the profile of these cytokines in diabetic rat models. Thus, our aim was to analyze IL-10 and TNF-α immunostaining in placental tissue and their respective concentrations in maternal plasma during pregnancy in diabetic rats in order to determine whether these cytokines can be used as predictors of alterations in the embryo-fetal organism and in placental development. These parameters were evaluated in non-diabetic (control; N = 15) and Wistar rats with streptozotocin (STZ)-induced diabetes (N = 15). At term, the dams (100 days of life) were killed under anesthesia and plasma and placental samples were collected for IL-10 and TNF-α determinations by ELISA and immunohistochemistry, respectively. The reproductive performance was analyzed. Plasma IL-10 concentrations were reduced in STZ rats compared to controls (7.6 ± 4.5 vs 20.9 ± 8.1 pg/mL). The placental scores of immunostaining intensity did not differ between groups (P > 0.05). Prevalence analysis showed that the IL-10 expression followed TNF-α expression, showing a balance between them. STZ rats also presented impaired reproductive performance and reduced plasma IL-10 levels related to damage during early embryonic development. However, the increased placental IL-10 as a compensatory mechanism for the deficit of maternal regulation permitted embryo development. Therefore, the data suggest that IL-10 can be used as a predictor of changes in the embryo-fetal organism and in placental development in pregnant diabetic rats.
ISSN:0100-879X
1414-431X