An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework

<p/> <p>A general nonlinear framework for an Ishikawa-hybrid proximal point algorithm using the notion of <inline-formula> <graphic file="1687-1812-2010-501293-i2.gif"/></inline-formula>-accretive is developed. Convergence analysis for the algorithm of solving...

Full description

Bibliographic Details
Main Authors: Jin MaoMing, Li HongGang, Xu AnJian
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2010/501293
id doaj-a66f94d48d5345a2a9021cd36df9b280
record_format Article
spelling doaj-a66f94d48d5345a2a9021cd36df9b2802020-11-24T23:27:18ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122010-01-0120101501293An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive FrameworkJin MaoMingLi HongGangXu AnJian<p/> <p>A general nonlinear framework for an Ishikawa-hybrid proximal point algorithm using the notion of <inline-formula> <graphic file="1687-1812-2010-501293-i2.gif"/></inline-formula>-accretive is developed. Convergence analysis for the algorithm of solving a nonlinear set-valued inclusions problem and existence analysis of solution for the nonlinear set-valued inclusions problem are explored along with some results on the resolvent operator corresponding to <inline-formula> <graphic file="1687-1812-2010-501293-i3.gif"/></inline-formula>-accretive mapping due to Lan-Cho-Verma in Banach space. The result that sequence <inline-formula> <graphic file="1687-1812-2010-501293-i4.gif"/></inline-formula> generated by the algorithm converges linearly to a solution of the nonlinear set-valued inclusions problem with the convergence rate <inline-formula> <graphic file="1687-1812-2010-501293-i5.gif"/></inline-formula> is proved.</p>http://www.fixedpointtheoryandapplications.com/content/2010/501293
collection DOAJ
language English
format Article
sources DOAJ
author Jin MaoMing
Li HongGang
Xu AnJian
spellingShingle Jin MaoMing
Li HongGang
Xu AnJian
An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework
Fixed Point Theory and Applications
author_facet Jin MaoMing
Li HongGang
Xu AnJian
author_sort Jin MaoMing
title An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework
title_short An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework
title_full An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework
title_fullStr An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework
title_full_unstemmed An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework
title_sort ishikawa-hybrid proximal point algorithm for nonlinear set-valued inclusions problem based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-accretive framework
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2010-01-01
description <p/> <p>A general nonlinear framework for an Ishikawa-hybrid proximal point algorithm using the notion of <inline-formula> <graphic file="1687-1812-2010-501293-i2.gif"/></inline-formula>-accretive is developed. Convergence analysis for the algorithm of solving a nonlinear set-valued inclusions problem and existence analysis of solution for the nonlinear set-valued inclusions problem are explored along with some results on the resolvent operator corresponding to <inline-formula> <graphic file="1687-1812-2010-501293-i3.gif"/></inline-formula>-accretive mapping due to Lan-Cho-Verma in Banach space. The result that sequence <inline-formula> <graphic file="1687-1812-2010-501293-i4.gif"/></inline-formula> generated by the algorithm converges linearly to a solution of the nonlinear set-valued inclusions problem with the convergence rate <inline-formula> <graphic file="1687-1812-2010-501293-i5.gif"/></inline-formula> is proved.</p>
url http://www.fixedpointtheoryandapplications.com/content/2010/501293
work_keys_str_mv AT jinmaoming anishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework
AT lihonggang anishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework
AT xuanjian anishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework
AT jinmaoming ishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework
AT lihonggang ishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework
AT xuanjian ishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework
_version_ 1716315643579465728