An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework
<p/> <p>A general nonlinear framework for an Ishikawa-hybrid proximal point algorithm using the notion of <inline-formula> <graphic file="1687-1812-2010-501293-i2.gif"/></inline-formula>-accretive is developed. Convergence analysis for the algorithm of solving...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2010/501293 |
id |
doaj-a66f94d48d5345a2a9021cd36df9b280 |
---|---|
record_format |
Article |
spelling |
doaj-a66f94d48d5345a2a9021cd36df9b2802020-11-24T23:27:18ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122010-01-0120101501293An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive FrameworkJin MaoMingLi HongGangXu AnJian<p/> <p>A general nonlinear framework for an Ishikawa-hybrid proximal point algorithm using the notion of <inline-formula> <graphic file="1687-1812-2010-501293-i2.gif"/></inline-formula>-accretive is developed. Convergence analysis for the algorithm of solving a nonlinear set-valued inclusions problem and existence analysis of solution for the nonlinear set-valued inclusions problem are explored along with some results on the resolvent operator corresponding to <inline-formula> <graphic file="1687-1812-2010-501293-i3.gif"/></inline-formula>-accretive mapping due to Lan-Cho-Verma in Banach space. The result that sequence <inline-formula> <graphic file="1687-1812-2010-501293-i4.gif"/></inline-formula> generated by the algorithm converges linearly to a solution of the nonlinear set-valued inclusions problem with the convergence rate <inline-formula> <graphic file="1687-1812-2010-501293-i5.gif"/></inline-formula> is proved.</p>http://www.fixedpointtheoryandapplications.com/content/2010/501293 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jin MaoMing Li HongGang Xu AnJian |
spellingShingle |
Jin MaoMing Li HongGang Xu AnJian An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework Fixed Point Theory and Applications |
author_facet |
Jin MaoMing Li HongGang Xu AnJian |
author_sort |
Jin MaoMing |
title |
An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework |
title_short |
An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework |
title_full |
An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework |
title_fullStr |
An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework |
title_full_unstemmed |
An Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-Accretive Framework |
title_sort |
ishikawa-hybrid proximal point algorithm for nonlinear set-valued inclusions problem based on <inline-formula> <graphic file="1687-1812-2010-501293-i1.gif"/></inline-formula>-accretive framework |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2010-01-01 |
description |
<p/> <p>A general nonlinear framework for an Ishikawa-hybrid proximal point algorithm using the notion of <inline-formula> <graphic file="1687-1812-2010-501293-i2.gif"/></inline-formula>-accretive is developed. Convergence analysis for the algorithm of solving a nonlinear set-valued inclusions problem and existence analysis of solution for the nonlinear set-valued inclusions problem are explored along with some results on the resolvent operator corresponding to <inline-formula> <graphic file="1687-1812-2010-501293-i3.gif"/></inline-formula>-accretive mapping due to Lan-Cho-Verma in Banach space. The result that sequence <inline-formula> <graphic file="1687-1812-2010-501293-i4.gif"/></inline-formula> generated by the algorithm converges linearly to a solution of the nonlinear set-valued inclusions problem with the convergence rate <inline-formula> <graphic file="1687-1812-2010-501293-i5.gif"/></inline-formula> is proved.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2010/501293 |
work_keys_str_mv |
AT jinmaoming anishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework AT lihonggang anishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework AT xuanjian anishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework AT jinmaoming ishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework AT lihonggang ishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework AT xuanjian ishikawahybridproximalpointalgorithmfornonlinearsetvaluedinclusionsproblembasedoninlineformulagraphicfile168718122010501293i1gifinlineformulaaccretiveframework |
_version_ |
1716315643579465728 |