Study on the Effects of Thermal Aging on Insulating Paper for High Voltage Transformer Composite with Natural Ester from Palm Oil Using Fourier Transform Infrared Spectroscopy (FTIR) and Energy Dispersive X-ray Spectroscopy (EDS)

Mineral oil is widely used as liquid insulation in high voltage equipment. Due to environmental considerations, recently natural esters have been considered as naturally friendly liquid insulation candidates for high voltage transformers. In this experiment, transformer insulation paper was subjecte...

Full description

Bibliographic Details
Main Authors: Abi Munajad, Cahyo Subroto, Suwarno
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/10/11/1857
Description
Summary:Mineral oil is widely used as liquid insulation in high voltage equipment. Due to environmental considerations, recently natural esters have been considered as naturally friendly liquid insulation candidates for high voltage transformers. In this experiment, transformer insulation paper was subjected to get accelerated aging test with copper strip in natural ester in a hermeneutical heat-resistant glass bottle at temperatures of 120 °C and 150 °C for 336 h, 672 h and 1008 h. The experimental results of Fourier transform infrared spectroscopy (FTIR) showed that the intensity of the absorbance peak of the O–H functional group decreased with aging, while the intensity of the C–H and C=O functional group absorbance peaks have increased with aging and the intensity of the C–O functional group absorbance peak has a tendency to increase with aging. The energy dispersive X-ray spectroscopy (EDS) experimental results showed that the weight percent of the element C increased with aging and the weight percent of the element O has decreased with aging. The experimental results show a good correlation between the degree of polymerization (DP) and the weight percent of O element. This indicates that EDS may be used as a new method for estimating the DP of transformer insulation paper.
ISSN:1996-1073