An Imputation Method for Missing Traffic Data Based on FCM Optimized by PSO-SVR
Missing traffic data are inevitable due to detector failure or communication failure. Currently, most of imputation methods estimated the missing traffic values by using spatial-temporal information as much as possible. However, it ignores an important fact that spatial-temporal information of the t...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2018-01-01
|
Series: | Journal of Advanced Transportation |
Online Access: | http://dx.doi.org/10.1155/2018/2935248 |
id |
doaj-a611b2c553bf4c10ac150f9119eea5e3 |
---|---|
record_format |
Article |
spelling |
doaj-a611b2c553bf4c10ac150f9119eea5e32020-11-25T02:28:06ZengHindawi-WileyJournal of Advanced Transportation0197-67292042-31952018-01-01201810.1155/2018/29352482935248An Imputation Method for Missing Traffic Data Based on FCM Optimized by PSO-SVRQiang Shang0Zhaosheng Yang1Song Gao2Derong Tan3School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo, Shandong 255049, ChinaCollege of Transportation, Jilin University, Changchun 130022, ChinaSchool of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo, Shandong 255049, ChinaSchool of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo, Shandong 255049, ChinaMissing traffic data are inevitable due to detector failure or communication failure. Currently, most of imputation methods estimated the missing traffic values by using spatial-temporal information as much as possible. However, it ignores an important fact that spatial-temporal information of the traffic missing data is often incomplete and unavailable. Moreover, most of the existing methods are verified by traffic data from freeway, and their applicability to urban road data needs to be further verified. In this paper, a hybrid method for missing traffic data imputation is proposed using FCM optimized by a combination of PSO algorithm and SVR. In this method, FCM is the basic algorithm and the parameters of FCM are optimized. Firstly, the patterns of missing traffic data are analyzed and the representation of missing traffic data is given using matrix-based data structure. Then, traffic data from urban expressway and urban arterial road are used to analyze spatial-temporal correlation of the traffic data for the determination of the proposed method input. Finally, numerical experiment is designed from three perspectives to test the performance of the proposed method. The experimental results demonstrate that the novel method not only has high imputation precision, but also exhibits good robustness.http://dx.doi.org/10.1155/2018/2935248 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Qiang Shang Zhaosheng Yang Song Gao Derong Tan |
spellingShingle |
Qiang Shang Zhaosheng Yang Song Gao Derong Tan An Imputation Method for Missing Traffic Data Based on FCM Optimized by PSO-SVR Journal of Advanced Transportation |
author_facet |
Qiang Shang Zhaosheng Yang Song Gao Derong Tan |
author_sort |
Qiang Shang |
title |
An Imputation Method for Missing Traffic Data Based on FCM Optimized by PSO-SVR |
title_short |
An Imputation Method for Missing Traffic Data Based on FCM Optimized by PSO-SVR |
title_full |
An Imputation Method for Missing Traffic Data Based on FCM Optimized by PSO-SVR |
title_fullStr |
An Imputation Method for Missing Traffic Data Based on FCM Optimized by PSO-SVR |
title_full_unstemmed |
An Imputation Method for Missing Traffic Data Based on FCM Optimized by PSO-SVR |
title_sort |
imputation method for missing traffic data based on fcm optimized by pso-svr |
publisher |
Hindawi-Wiley |
series |
Journal of Advanced Transportation |
issn |
0197-6729 2042-3195 |
publishDate |
2018-01-01 |
description |
Missing traffic data are inevitable due to detector failure or communication failure. Currently, most of imputation methods estimated the missing traffic values by using spatial-temporal information as much as possible. However, it ignores an important fact that spatial-temporal information of the traffic missing data is often incomplete and unavailable. Moreover, most of the existing methods are verified by traffic data from freeway, and their applicability to urban road data needs to be further verified. In this paper, a hybrid method for missing traffic data imputation is proposed using FCM optimized by a combination of PSO algorithm and SVR. In this method, FCM is the basic algorithm and the parameters of FCM are optimized. Firstly, the patterns of missing traffic data are analyzed and the representation of missing traffic data is given using matrix-based data structure. Then, traffic data from urban expressway and urban arterial road are used to analyze spatial-temporal correlation of the traffic data for the determination of the proposed method input. Finally, numerical experiment is designed from three perspectives to test the performance of the proposed method. The experimental results demonstrate that the novel method not only has high imputation precision, but also exhibits good robustness. |
url |
http://dx.doi.org/10.1155/2018/2935248 |
work_keys_str_mv |
AT qiangshang animputationmethodformissingtrafficdatabasedonfcmoptimizedbypsosvr AT zhaoshengyang animputationmethodformissingtrafficdatabasedonfcmoptimizedbypsosvr AT songgao animputationmethodformissingtrafficdatabasedonfcmoptimizedbypsosvr AT derongtan animputationmethodformissingtrafficdatabasedonfcmoptimizedbypsosvr AT qiangshang imputationmethodformissingtrafficdatabasedonfcmoptimizedbypsosvr AT zhaoshengyang imputationmethodformissingtrafficdatabasedonfcmoptimizedbypsosvr AT songgao imputationmethodformissingtrafficdatabasedonfcmoptimizedbypsosvr AT derongtan imputationmethodformissingtrafficdatabasedonfcmoptimizedbypsosvr |
_version_ |
1724840283175124992 |