Emergence of Self-Organized Dynamical Domains in a Ring of Coupled Population Oscillators
We show that interactions of inherently chaotic oscillators can lead to coexistence of regular oscillatory regimes and chaotic oscillations in the rings of coupled oscillators provided that the level of interaction between the oscillators exceeds a threshold value. The transformation of the initiall...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/6/601 |
Summary: | We show that interactions of inherently chaotic oscillators can lead to coexistence of regular oscillatory regimes and chaotic oscillations in the rings of coupled oscillators provided that the level of interaction between the oscillators exceeds a threshold value. The transformation of the initially chaotic dynamics into the regular dynamics in a number of the coupled oscillators is shown to result from suppression of chaos by separation of certain oscillation periods from the continuous spectra, which are characteristic of chaotic oscillations. |
---|---|
ISSN: | 2227-7390 |