Summary: | As rápidas transformações do meio ambiente decorrentes das atividades humanas de ocupação dos espaços tem se tornado, uma das grandes preocupações atuais. Nesse contexto, torna-se fator essencial a análise do uso e cobertura terrestre e seu monitoramento a fim subsidiar informações para gestão ambiental. Através de mapeamentos realizados com a utilização de ferramentas de Sensoriamento Remoto é possível a obtenção de informações acerca das mudanças de uso e cobertura da Terra, sendo este realizado por meio de técnicas de classificação de imagens, utilizando algoritmos classificadores. Dentre os algoritmos desenvolvidos para este fim, existem aqueles, baseados na área do conhecimento da Inteligência Artificial como o Support Vector Machine (SVM), que vem sendo empregado com sucesso na separação máxima das classes. O objetivo deste trabalho é a aplicação do SVM no mapeamento do uso e cobertura do solo na Bacia do Rio Vieira e comparar os resultados com aqueles obtidos pelo algoritmo, Máxima Verossimilhança. Nos resultados encontrados, observou-se que na análise do índice Kappa ambos os algoritmos apresentaram uma forte concordância e as classes analisadas se mostraram coerentes com as características da região de estudo, contudo o algoritmo SVM apresentou menor confusão espectral entre as classes e melhor desempenho operacional.
A B S T R A C T
The rapid changes in the environment resulting from human activities of occupation of spaces have become one of the major current concerns. In this context, it becomes essential analysis of use and land cover and its monitoring in order subsidize information for environmental management. Through mappings performed with the use of tools for Remote Sensing is possible to obtain information about changes in Land use and cover, this being accomplished by means of techniques of classification of images, using algorithms classifiers. Among the algorithms developed for this purpose, there are those, based in the area of knowledge of Artificial Intelligence such as the Support Vector Machine (SVM), which has been employed with success in maximum separation of categories. The objective of this work is the application of SVM in the use and coverage of the soil in The Basin of the River Vieira and compares the results with those obtained by the algorithm, Maximum Likelihood. In the results found, it was observed that in the analysis of the Kappa index both algorithms presented a strong concordance and the classes analyzed if showed consistent with the characteristics of the region of study, however, the SVM algorithm showed lower spectral confusion between categories and better operational performance.
Keywords: Artificial Intelligence, River Basin Vieira and Classification
|