Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective

The automatic flap barrier gate system (AFBGS) plays a critical role in building security, but it is more vulnerable to natural hazards than common exits (including power failure, due to earthquakes, and delayed evacuation, due to safety certification, etc.). This article considers a dynamic decisio...

Full description

Bibliographic Details
Main Authors: Yu Song, Jia Liu, Qian Liu
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/13/16/8771
Description
Summary:The automatic flap barrier gate system (AFBGS) plays a critical role in building security, but it is more vulnerable to natural hazards than common exits (including power failure, due to earthquakes, and delayed evacuation, due to safety certification, etc.). This article considers a dynamic decision-making process of evacuees during post-earthquake evacuation near an AFBGS. An interesting metaphor, broken windows (BW), is utilized to interpret people’s actual behavior during evacuation. A multi-stage decision-making mechanism of evacuees is developed to characterize the instantaneous transition among three defined stages: Habitual, mild, and radical states. Then, we build a modified three-layer social force model to reproduce the interaction between evacuees based on an actual post-earthquake evacuation. The simulations reveal that BW provides a contextualized understanding of emergency evacuation with a similar effect to the traditional metaphor. An earlier appearance of a mild rule breaker leads to a higher crowd evacuation efficiency. If evacuees maintain the state of broken windows behavior (BWB), the crowd evacuation efficiency can be improved significantly. Contrary to the criminological interpretation, the overall effect of mild BWB is positive, but the radical BWB is encouraged under the command of guiders.
ISSN:2071-1050