Affinity Membranes and Monoliths for Protein Purification
Affinity capture represents an important step in downstream processing of proteins and it is conventionally performed through a chromatographic process. The performance of this step highly depends on the type of matrix employed. In particular, resin beads and convective materials, such as membranes...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-12-01
|
Series: | Membranes |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-0375/10/1/1 |
id |
doaj-a5df34df5ce44a93a043c6b209c7941d |
---|---|
record_format |
Article |
spelling |
doaj-a5df34df5ce44a93a043c6b209c7941d2020-11-25T02:18:06ZengMDPI AGMembranes2077-03752019-12-01101110.3390/membranes10010001membranes10010001Affinity Membranes and Monoliths for Protein PurificationEleonora Lalli0Jouciane S. Silva1Cristiana Boi2Giulio C. Sarti3Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, DICAM, Alma Mater Studiorum Università di Bologna, via Terracini 28, 40131 Bologna, ItalyDipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, DICAM, Alma Mater Studiorum Università di Bologna, via Terracini 28, 40131 Bologna, ItalyDipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, DICAM, Alma Mater Studiorum Università di Bologna, via Terracini 28, 40131 Bologna, ItalyDipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, DICAM, Alma Mater Studiorum Università di Bologna, via Terracini 28, 40131 Bologna, ItalyAffinity capture represents an important step in downstream processing of proteins and it is conventionally performed through a chromatographic process. The performance of this step highly depends on the type of matrix employed. In particular, resin beads and convective materials, such as membranes and monoliths, are the commonly available supports. The present work deals with non-competitive binding of bovine serum albumin (BSA) on different chromatographic media functionalized with Cibacron Blue F3GA (CB). The aim is to set up the development of the purification process starting from the lab-scale characterization of a commercially available CB resin, regenerated cellulose membranes and polymeric monoliths, functionalized with CB to identify the best option. The performance of the three different chromatographic media is evaluated in terms of BSA binding capacity and productivity. The experimental investigation shows promising results for regenerated cellulose membranes and monoliths, whose performance are comparable with those of the packed column tested. It was demonstrated that the capacity of convective stationary phases does not depend on flow rate, in the range investigated, and that the productivity that can be achieved with membranes is 10 to 20 times higher depending on the initial BSA concentration value, and with monoliths it is approximately twice that of beads, at the same superficial velocity.https://www.mdpi.com/2077-0375/10/1/1affinity chromatographybeadsmembranesmonolithssurface modificationproteins |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Eleonora Lalli Jouciane S. Silva Cristiana Boi Giulio C. Sarti |
spellingShingle |
Eleonora Lalli Jouciane S. Silva Cristiana Boi Giulio C. Sarti Affinity Membranes and Monoliths for Protein Purification Membranes affinity chromatography beads membranes monoliths surface modification proteins |
author_facet |
Eleonora Lalli Jouciane S. Silva Cristiana Boi Giulio C. Sarti |
author_sort |
Eleonora Lalli |
title |
Affinity Membranes and Monoliths for Protein Purification |
title_short |
Affinity Membranes and Monoliths for Protein Purification |
title_full |
Affinity Membranes and Monoliths for Protein Purification |
title_fullStr |
Affinity Membranes and Monoliths for Protein Purification |
title_full_unstemmed |
Affinity Membranes and Monoliths for Protein Purification |
title_sort |
affinity membranes and monoliths for protein purification |
publisher |
MDPI AG |
series |
Membranes |
issn |
2077-0375 |
publishDate |
2019-12-01 |
description |
Affinity capture represents an important step in downstream processing of proteins and it is conventionally performed through a chromatographic process. The performance of this step highly depends on the type of matrix employed. In particular, resin beads and convective materials, such as membranes and monoliths, are the commonly available supports. The present work deals with non-competitive binding of bovine serum albumin (BSA) on different chromatographic media functionalized with Cibacron Blue F3GA (CB). The aim is to set up the development of the purification process starting from the lab-scale characterization of a commercially available CB resin, regenerated cellulose membranes and polymeric monoliths, functionalized with CB to identify the best option. The performance of the three different chromatographic media is evaluated in terms of BSA binding capacity and productivity. The experimental investigation shows promising results for regenerated cellulose membranes and monoliths, whose performance are comparable with those of the packed column tested. It was demonstrated that the capacity of convective stationary phases does not depend on flow rate, in the range investigated, and that the productivity that can be achieved with membranes is 10 to 20 times higher depending on the initial BSA concentration value, and with monoliths it is approximately twice that of beads, at the same superficial velocity. |
topic |
affinity chromatography beads membranes monoliths surface modification proteins |
url |
https://www.mdpi.com/2077-0375/10/1/1 |
work_keys_str_mv |
AT eleonoralalli affinitymembranesandmonolithsforproteinpurification AT joucianessilva affinitymembranesandmonolithsforproteinpurification AT cristianaboi affinitymembranesandmonolithsforproteinpurification AT giuliocsarti affinitymembranesandmonolithsforproteinpurification |
_version_ |
1724883262277419008 |