Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging
We describe here the design and implementation of an in vitro microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiolog...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-09-01
|
Series: | Frontiers in Bioengineering and Biotechnology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fbioe.2020.573775/full |
id |
doaj-a59750942c61446cad7b10bfa96a0dad |
---|---|
record_format |
Article |
spelling |
doaj-a59750942c61446cad7b10bfa96a0dad2020-11-25T03:55:41ZengFrontiers Media S.A.Frontiers in Bioengineering and Biotechnology2296-41852020-09-01810.3389/fbioe.2020.573775573775Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical ImagingMootaz M. Salman0Mootaz M. Salman1Graham Marsh2Ilja Kusters3Ilja Kusters4Matthieu Delincé5Matthieu Delincé6Giuseppe Di Caprio7Giuseppe Di Caprio8Srigokul Upadhyayula9Srigokul Upadhyayula10Giovanni de Nola11Giovanni de Nola12Ronan Hunt13Kazuka G. Ohashi14Taylor Gray15Fumitaka Shimizu16Yasuteru Sano17Takashi Kanda18Birgit Obermeier19Tom Kirchhausen20Tom Kirchhausen21Tom Kirchhausen22Department of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesBiogen, Cambridge, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesBiogen, Cambridge, MA, United StatesYamaguchi University Graduate School of Medicine, Ube, JapanYamaguchi University Graduate School of Medicine, Ube, JapanYamaguchi University Graduate School of Medicine, Ube, JapanBiogen, Cambridge, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesDepartment of Pediatrics, Harvard Medical School, Boston, MA, United StatesWe describe here the design and implementation of an in vitro microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiological rates to support vascular function, (2) it allows for very small volumes which makes the device ideal for studies involving biotherapeutics, (3) it is amenable for multiple high resolution imaging modalities such as transmission electron microscopy (TEM), 3D live fluorescence imaging using traditional spinning disk confocal microscopy, and advanced lattice light sheet microscopy (LLSM). Importantly, we miniaturized the design, so it can fit within the physical constraints of LLSM, with the objective to study physiology in live cells at subcellular level. We validated barrier function of our brain microvessel-on-a-chip by measuring permeability of fluorescent dextran and a human monoclonal antibody. One potential application is to investigate mechanisms of transcytosis across the brain microvessel-like barrier of fluorescently-tagged biologics, viruses or nanoparticles.https://www.frontiersin.org/article/10.3389/fbioe.2020.573775/fullblood-brain barrier (BBB)capillarymicrovesselshear stressmicrofluidicslive cell imaging |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mootaz M. Salman Mootaz M. Salman Graham Marsh Ilja Kusters Ilja Kusters Matthieu Delincé Matthieu Delincé Giuseppe Di Caprio Giuseppe Di Caprio Srigokul Upadhyayula Srigokul Upadhyayula Giovanni de Nola Giovanni de Nola Ronan Hunt Kazuka G. Ohashi Taylor Gray Fumitaka Shimizu Yasuteru Sano Takashi Kanda Birgit Obermeier Tom Kirchhausen Tom Kirchhausen Tom Kirchhausen |
spellingShingle |
Mootaz M. Salman Mootaz M. Salman Graham Marsh Ilja Kusters Ilja Kusters Matthieu Delincé Matthieu Delincé Giuseppe Di Caprio Giuseppe Di Caprio Srigokul Upadhyayula Srigokul Upadhyayula Giovanni de Nola Giovanni de Nola Ronan Hunt Kazuka G. Ohashi Taylor Gray Fumitaka Shimizu Yasuteru Sano Takashi Kanda Birgit Obermeier Tom Kirchhausen Tom Kirchhausen Tom Kirchhausen Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging Frontiers in Bioengineering and Biotechnology blood-brain barrier (BBB) capillary microvessel shear stress microfluidics live cell imaging |
author_facet |
Mootaz M. Salman Mootaz M. Salman Graham Marsh Ilja Kusters Ilja Kusters Matthieu Delincé Matthieu Delincé Giuseppe Di Caprio Giuseppe Di Caprio Srigokul Upadhyayula Srigokul Upadhyayula Giovanni de Nola Giovanni de Nola Ronan Hunt Kazuka G. Ohashi Taylor Gray Fumitaka Shimizu Yasuteru Sano Takashi Kanda Birgit Obermeier Tom Kirchhausen Tom Kirchhausen Tom Kirchhausen |
author_sort |
Mootaz M. Salman |
title |
Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging |
title_short |
Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging |
title_full |
Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging |
title_fullStr |
Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging |
title_full_unstemmed |
Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging |
title_sort |
design and validation of a human brain endothelial microvessel-on-a-chip open microfluidic model enabling advanced optical imaging |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Bioengineering and Biotechnology |
issn |
2296-4185 |
publishDate |
2020-09-01 |
description |
We describe here the design and implementation of an in vitro microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiological rates to support vascular function, (2) it allows for very small volumes which makes the device ideal for studies involving biotherapeutics, (3) it is amenable for multiple high resolution imaging modalities such as transmission electron microscopy (TEM), 3D live fluorescence imaging using traditional spinning disk confocal microscopy, and advanced lattice light sheet microscopy (LLSM). Importantly, we miniaturized the design, so it can fit within the physical constraints of LLSM, with the objective to study physiology in live cells at subcellular level. We validated barrier function of our brain microvessel-on-a-chip by measuring permeability of fluorescent dextran and a human monoclonal antibody. One potential application is to investigate mechanisms of transcytosis across the brain microvessel-like barrier of fluorescently-tagged biologics, viruses or nanoparticles. |
topic |
blood-brain barrier (BBB) capillary microvessel shear stress microfluidics live cell imaging |
url |
https://www.frontiersin.org/article/10.3389/fbioe.2020.573775/full |
work_keys_str_mv |
AT mootazmsalman designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT mootazmsalman designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT grahammarsh designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT iljakusters designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT iljakusters designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT matthieudelince designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT matthieudelince designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT giuseppedicaprio designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT giuseppedicaprio designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT srigokulupadhyayula designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT srigokulupadhyayula designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT giovannidenola designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT giovannidenola designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT ronanhunt designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT kazukagohashi designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT taylorgray designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT fumitakashimizu designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT yasuterusano designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT takashikanda designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT birgitobermeier designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT tomkirchhausen designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT tomkirchhausen designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging AT tomkirchhausen designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging |
_version_ |
1724468783391703040 |