Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging

We describe here the design and implementation of an in vitro microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiolog...

Full description

Bibliographic Details
Main Authors: Mootaz M. Salman, Graham Marsh, Ilja Kusters, Matthieu Delincé, Giuseppe Di Caprio, Srigokul Upadhyayula, Giovanni de Nola, Ronan Hunt, Kazuka G. Ohashi, Taylor Gray, Fumitaka Shimizu, Yasuteru Sano, Takashi Kanda, Birgit Obermeier, Tom Kirchhausen
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-09-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fbioe.2020.573775/full
id doaj-a59750942c61446cad7b10bfa96a0dad
record_format Article
spelling doaj-a59750942c61446cad7b10bfa96a0dad2020-11-25T03:55:41ZengFrontiers Media S.A.Frontiers in Bioengineering and Biotechnology2296-41852020-09-01810.3389/fbioe.2020.573775573775Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical ImagingMootaz M. Salman0Mootaz M. Salman1Graham Marsh2Ilja Kusters3Ilja Kusters4Matthieu Delincé5Matthieu Delincé6Giuseppe Di Caprio7Giuseppe Di Caprio8Srigokul Upadhyayula9Srigokul Upadhyayula10Giovanni de Nola11Giovanni de Nola12Ronan Hunt13Kazuka G. Ohashi14Taylor Gray15Fumitaka Shimizu16Yasuteru Sano17Takashi Kanda18Birgit Obermeier19Tom Kirchhausen20Tom Kirchhausen21Tom Kirchhausen22Department of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesBiogen, Cambridge, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesBiogen, Cambridge, MA, United StatesYamaguchi University Graduate School of Medicine, Ube, JapanYamaguchi University Graduate School of Medicine, Ube, JapanYamaguchi University Graduate School of Medicine, Ube, JapanBiogen, Cambridge, MA, United StatesDepartment of Cell Biology, Harvard Medical School, Boston, MA, United StatesProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United StatesDepartment of Pediatrics, Harvard Medical School, Boston, MA, United StatesWe describe here the design and implementation of an in vitro microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiological rates to support vascular function, (2) it allows for very small volumes which makes the device ideal for studies involving biotherapeutics, (3) it is amenable for multiple high resolution imaging modalities such as transmission electron microscopy (TEM), 3D live fluorescence imaging using traditional spinning disk confocal microscopy, and advanced lattice light sheet microscopy (LLSM). Importantly, we miniaturized the design, so it can fit within the physical constraints of LLSM, with the objective to study physiology in live cells at subcellular level. We validated barrier function of our brain microvessel-on-a-chip by measuring permeability of fluorescent dextran and a human monoclonal antibody. One potential application is to investigate mechanisms of transcytosis across the brain microvessel-like barrier of fluorescently-tagged biologics, viruses or nanoparticles.https://www.frontiersin.org/article/10.3389/fbioe.2020.573775/fullblood-brain barrier (BBB)capillarymicrovesselshear stressmicrofluidicslive cell imaging
collection DOAJ
language English
format Article
sources DOAJ
author Mootaz M. Salman
Mootaz M. Salman
Graham Marsh
Ilja Kusters
Ilja Kusters
Matthieu Delincé
Matthieu Delincé
Giuseppe Di Caprio
Giuseppe Di Caprio
Srigokul Upadhyayula
Srigokul Upadhyayula
Giovanni de Nola
Giovanni de Nola
Ronan Hunt
Kazuka G. Ohashi
Taylor Gray
Fumitaka Shimizu
Yasuteru Sano
Takashi Kanda
Birgit Obermeier
Tom Kirchhausen
Tom Kirchhausen
Tom Kirchhausen
spellingShingle Mootaz M. Salman
Mootaz M. Salman
Graham Marsh
Ilja Kusters
Ilja Kusters
Matthieu Delincé
Matthieu Delincé
Giuseppe Di Caprio
Giuseppe Di Caprio
Srigokul Upadhyayula
Srigokul Upadhyayula
Giovanni de Nola
Giovanni de Nola
Ronan Hunt
Kazuka G. Ohashi
Taylor Gray
Fumitaka Shimizu
Yasuteru Sano
Takashi Kanda
Birgit Obermeier
Tom Kirchhausen
Tom Kirchhausen
Tom Kirchhausen
Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging
Frontiers in Bioengineering and Biotechnology
blood-brain barrier (BBB)
capillary
microvessel
shear stress
microfluidics
live cell imaging
author_facet Mootaz M. Salman
Mootaz M. Salman
Graham Marsh
Ilja Kusters
Ilja Kusters
Matthieu Delincé
Matthieu Delincé
Giuseppe Di Caprio
Giuseppe Di Caprio
Srigokul Upadhyayula
Srigokul Upadhyayula
Giovanni de Nola
Giovanni de Nola
Ronan Hunt
Kazuka G. Ohashi
Taylor Gray
Fumitaka Shimizu
Yasuteru Sano
Takashi Kanda
Birgit Obermeier
Tom Kirchhausen
Tom Kirchhausen
Tom Kirchhausen
author_sort Mootaz M. Salman
title Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging
title_short Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging
title_full Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging
title_fullStr Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging
title_full_unstemmed Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging
title_sort design and validation of a human brain endothelial microvessel-on-a-chip open microfluidic model enabling advanced optical imaging
publisher Frontiers Media S.A.
series Frontiers in Bioengineering and Biotechnology
issn 2296-4185
publishDate 2020-09-01
description We describe here the design and implementation of an in vitro microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiological rates to support vascular function, (2) it allows for very small volumes which makes the device ideal for studies involving biotherapeutics, (3) it is amenable for multiple high resolution imaging modalities such as transmission electron microscopy (TEM), 3D live fluorescence imaging using traditional spinning disk confocal microscopy, and advanced lattice light sheet microscopy (LLSM). Importantly, we miniaturized the design, so it can fit within the physical constraints of LLSM, with the objective to study physiology in live cells at subcellular level. We validated barrier function of our brain microvessel-on-a-chip by measuring permeability of fluorescent dextran and a human monoclonal antibody. One potential application is to investigate mechanisms of transcytosis across the brain microvessel-like barrier of fluorescently-tagged biologics, viruses or nanoparticles.
topic blood-brain barrier (BBB)
capillary
microvessel
shear stress
microfluidics
live cell imaging
url https://www.frontiersin.org/article/10.3389/fbioe.2020.573775/full
work_keys_str_mv AT mootazmsalman designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT mootazmsalman designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT grahammarsh designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT iljakusters designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT iljakusters designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT matthieudelince designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT matthieudelince designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT giuseppedicaprio designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT giuseppedicaprio designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT srigokulupadhyayula designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT srigokulupadhyayula designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT giovannidenola designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT giovannidenola designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT ronanhunt designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT kazukagohashi designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT taylorgray designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT fumitakashimizu designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT yasuterusano designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT takashikanda designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT birgitobermeier designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT tomkirchhausen designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT tomkirchhausen designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
AT tomkirchhausen designandvalidationofahumanbrainendothelialmicrovesselonachipopenmicrofluidicmodelenablingadvancedopticalimaging
_version_ 1724468783391703040