Multivariate temporal modeling of crime with dynamic linear models.
Interest in modeling contemporary crime trends, a task that has historically been considered valuable to the public, researchers, and policymakers, is resurging. Advancements in criminology have made it clear that understanding crime trends necessarily involves understanding trends in how likely ind...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0218375 |
id |
doaj-a58f044307b34da197d8e904a34708c2 |
---|---|
record_format |
Article |
spelling |
doaj-a58f044307b34da197d8e904a34708c22021-03-03T19:49:14ZengPublic Library of Science (PLoS)PLoS ONE1932-62032019-01-01147e021837510.1371/journal.pone.0218375Multivariate temporal modeling of crime with dynamic linear models.Nathaniel GartonJarad NiemiInterest in modeling contemporary crime trends, a task that has historically been considered valuable to the public, researchers, and policymakers, is resurging. Advancements in criminology have made it clear that understanding crime trends necessarily involves understanding trends in how likely individuals are to report crimes to the police, as well as how likely the police are to accurately record those crimes. In this paper, we use dynamic linear models to simultaneously model the time series for several crime types in order to gain insight into trends in crime and crime reporting. We analyze crime data from Chicago spanning 2007 through 2016 and show how correlations in the way crime trends evolve may contain information about drivers of crime and crime reporting. We provide evidence of substantial differences in the relationships between the trends of crimes of different types depending on whether crimes are violent or nonviolent and whether or not crimes are tracked in the FBI's Uniform Crime Report.https://doi.org/10.1371/journal.pone.0218375 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nathaniel Garton Jarad Niemi |
spellingShingle |
Nathaniel Garton Jarad Niemi Multivariate temporal modeling of crime with dynamic linear models. PLoS ONE |
author_facet |
Nathaniel Garton Jarad Niemi |
author_sort |
Nathaniel Garton |
title |
Multivariate temporal modeling of crime with dynamic linear models. |
title_short |
Multivariate temporal modeling of crime with dynamic linear models. |
title_full |
Multivariate temporal modeling of crime with dynamic linear models. |
title_fullStr |
Multivariate temporal modeling of crime with dynamic linear models. |
title_full_unstemmed |
Multivariate temporal modeling of crime with dynamic linear models. |
title_sort |
multivariate temporal modeling of crime with dynamic linear models. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2019-01-01 |
description |
Interest in modeling contemporary crime trends, a task that has historically been considered valuable to the public, researchers, and policymakers, is resurging. Advancements in criminology have made it clear that understanding crime trends necessarily involves understanding trends in how likely individuals are to report crimes to the police, as well as how likely the police are to accurately record those crimes. In this paper, we use dynamic linear models to simultaneously model the time series for several crime types in order to gain insight into trends in crime and crime reporting. We analyze crime data from Chicago spanning 2007 through 2016 and show how correlations in the way crime trends evolve may contain information about drivers of crime and crime reporting. We provide evidence of substantial differences in the relationships between the trends of crimes of different types depending on whether crimes are violent or nonviolent and whether or not crimes are tracked in the FBI's Uniform Crime Report. |
url |
https://doi.org/10.1371/journal.pone.0218375 |
work_keys_str_mv |
AT nathanielgarton multivariatetemporalmodelingofcrimewithdynamiclinearmodels AT jaradniemi multivariatetemporalmodelingofcrimewithdynamiclinearmodels |
_version_ |
1714825571977920512 |