Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D models

<p>We investigate the optimal relationship between the aerodynamic power, thrust loading and size of a wind turbine rotor when its design is constrained by a static aerodynamic load. Based on 1-D axial momentum theory, the captured power <span class="inline-formula"><math xm...

Full description

Bibliographic Details
Main Authors: K. Loenbaek, C. Bak, J. I. Madsen, B. Dam
Format: Article
Language:English
Published: Copernicus Publications 2020-01-01
Series:Wind Energy Science
Online Access:https://www.wind-energ-sci.net/5/155/2020/wes-5-155-2020.pdf
id doaj-a58de484cae345249d0a0f28f4d20d16
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author K. Loenbaek
K. Loenbaek
C. Bak
J. I. Madsen
B. Dam
spellingShingle K. Loenbaek
K. Loenbaek
C. Bak
J. I. Madsen
B. Dam
Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D models
Wind Energy Science
author_facet K. Loenbaek
K. Loenbaek
C. Bak
J. I. Madsen
B. Dam
author_sort K. Loenbaek
title Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D models
title_short Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D models
title_full Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D models
title_fullStr Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D models
title_full_unstemmed Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D models
title_sort optimal relationship between power and design-driving loads for wind turbine rotors using 1-d models
publisher Copernicus Publications
series Wind Energy Science
issn 2366-7443
2366-7451
publishDate 2020-01-01
description <p>We investigate the optimal relationship between the aerodynamic power, thrust loading and size of a wind turbine rotor when its design is constrained by a static aerodynamic load. Based on 1-D axial momentum theory, the captured power <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mi>P</mi><mo stretchy="false" mathvariant="normal">̃</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="a2ad6297981715cca1b30423afa073ec"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-5-155-2020-ie00001.svg" width="9pt" height="12pt" src="wes-5-155-2020-ie00001.png"/></svg:svg></span></span> for a uniformly loaded rotor can be expressed in terms of the rotor radius <span class="inline-formula"><i>R</i></span> and the rotor thrust coefficient <span class="inline-formula"><i>C</i><sub>T</sub></span>. Common types of static design-driving load constraints (DDLCs), e.g., limits on the permissible root-bending moment or tip deflection, may be generalized into a form that also depends on <span class="inline-formula"><i>C</i><sub>T</sub></span> and <span class="inline-formula"><i>R</i></span>. The developed model is based on simple relations and makes explorations of overall parameters possible in the early stage of the rotor design process. Using these relationships to maximize <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mi>P</mi><mo mathvariant="normal" stretchy="false">̃</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="1541391186c380c03e6e292cc4f0556a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-5-155-2020-ie00002.svg" width="9pt" height="12pt" src="wes-5-155-2020-ie00002.png"/></svg:svg></span></span> subject to a DDLC shows that operating the rotor at the Betz limit (maximum <span class="inline-formula"><i>C</i><sub>P</sub></span>) does not lead to the highest power capture. Rather, it is possible to improve performance with a larger rotor radius and lower <span class="inline-formula"><i>C</i><sub>T</sub></span> without violating the DDLC. As an example, a rotor design driven by a tip-deflection constraint may achieve 1.9&thinsp;% extra power capture <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mi>P</mi><mo stretchy="false" mathvariant="normal">̃</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="36f0243125da618735c253ab94171173"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-5-155-2020-ie00003.svg" width="9pt" height="12pt" src="wes-5-155-2020-ie00003.png"/></svg:svg></span></span> compared to the baseline (Betz limit) rotor.</p> <p>This method is extended to the optimization of rotors with respect to annual energy production (AEP), in which the thrust characteristics <span class="inline-formula"><i>C</i><sub>T</sub>(<i>V</i>)</span> need to be determined together with <span class="inline-formula"><i>R</i></span>. This results in a much higher relative potential for improvement since the constraint limit can be met over a larger range of wind speeds. For example, a relative gain in AEP of <span class="inline-formula">+5.7</span>&thinsp;% is possible for a rotor design constrained by tip deflections, compared to a rotor designed for optimal <span class="inline-formula"><i>C</i><sub>P</sub></span>. The optimal solution for AEP leads to a thrust curve with three distinct operational regimes and so-called thrust clipping.</p>
url https://www.wind-energ-sci.net/5/155/2020/wes-5-155-2020.pdf
work_keys_str_mv AT kloenbaek optimalrelationshipbetweenpoweranddesigndrivingloadsforwindturbinerotorsusing1dmodels
AT kloenbaek optimalrelationshipbetweenpoweranddesigndrivingloadsforwindturbinerotorsusing1dmodels
AT cbak optimalrelationshipbetweenpoweranddesigndrivingloadsforwindturbinerotorsusing1dmodels
AT jimadsen optimalrelationshipbetweenpoweranddesigndrivingloadsforwindturbinerotorsusing1dmodels
AT bdam optimalrelationshipbetweenpoweranddesigndrivingloadsforwindturbinerotorsusing1dmodels
_version_ 1725056705505525760
spelling doaj-a58de484cae345249d0a0f28f4d20d162020-11-25T01:37:54ZengCopernicus PublicationsWind Energy Science2366-74432366-74512020-01-01515517010.5194/wes-5-155-2020Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D modelsK. Loenbaek0K. Loenbaek1C. Bak2J. I. Madsen3B. Dam4Suzlon Blade Science Center, Havneparken 1, 7100 Vejle, DenmarkTechnical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, DenmarkTechnical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, DenmarkSuzlon Blade Science Center, Havneparken 1, 7100 Vejle, DenmarkSuzlon Blade Science Center, Havneparken 1, 7100 Vejle, Denmark<p>We investigate the optimal relationship between the aerodynamic power, thrust loading and size of a wind turbine rotor when its design is constrained by a static aerodynamic load. Based on 1-D axial momentum theory, the captured power <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mi>P</mi><mo stretchy="false" mathvariant="normal">̃</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="a2ad6297981715cca1b30423afa073ec"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-5-155-2020-ie00001.svg" width="9pt" height="12pt" src="wes-5-155-2020-ie00001.png"/></svg:svg></span></span> for a uniformly loaded rotor can be expressed in terms of the rotor radius <span class="inline-formula"><i>R</i></span> and the rotor thrust coefficient <span class="inline-formula"><i>C</i><sub>T</sub></span>. Common types of static design-driving load constraints (DDLCs), e.g., limits on the permissible root-bending moment or tip deflection, may be generalized into a form that also depends on <span class="inline-formula"><i>C</i><sub>T</sub></span> and <span class="inline-formula"><i>R</i></span>. The developed model is based on simple relations and makes explorations of overall parameters possible in the early stage of the rotor design process. Using these relationships to maximize <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mi>P</mi><mo mathvariant="normal" stretchy="false">̃</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="1541391186c380c03e6e292cc4f0556a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-5-155-2020-ie00002.svg" width="9pt" height="12pt" src="wes-5-155-2020-ie00002.png"/></svg:svg></span></span> subject to a DDLC shows that operating the rotor at the Betz limit (maximum <span class="inline-formula"><i>C</i><sub>P</sub></span>) does not lead to the highest power capture. Rather, it is possible to improve performance with a larger rotor radius and lower <span class="inline-formula"><i>C</i><sub>T</sub></span> without violating the DDLC. As an example, a rotor design driven by a tip-deflection constraint may achieve 1.9&thinsp;% extra power capture <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mi>P</mi><mo stretchy="false" mathvariant="normal">̃</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="36f0243125da618735c253ab94171173"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-5-155-2020-ie00003.svg" width="9pt" height="12pt" src="wes-5-155-2020-ie00003.png"/></svg:svg></span></span> compared to the baseline (Betz limit) rotor.</p> <p>This method is extended to the optimization of rotors with respect to annual energy production (AEP), in which the thrust characteristics <span class="inline-formula"><i>C</i><sub>T</sub>(<i>V</i>)</span> need to be determined together with <span class="inline-formula"><i>R</i></span>. This results in a much higher relative potential for improvement since the constraint limit can be met over a larger range of wind speeds. For example, a relative gain in AEP of <span class="inline-formula">+5.7</span>&thinsp;% is possible for a rotor design constrained by tip deflections, compared to a rotor designed for optimal <span class="inline-formula"><i>C</i><sub>P</sub></span>. The optimal solution for AEP leads to a thrust curve with three distinct operational regimes and so-called thrust clipping.</p>https://www.wind-energ-sci.net/5/155/2020/wes-5-155-2020.pdf