Sub-nano tesla magnetic imaging based on room-temperature magnetic flux sensors with vibrating sample magnetometry

We developed a two-dimensional imaging method for weak magnetic charge distribution using a commercially available magnetic impedance sensor whose magnetic field resolution is 10 pT/Hz1/2 at 10 Hz. When we applied the vibrating sample magnetometry, giving a minute mechanical vibration to the sample...

Full description

Bibliographic Details
Main Authors: Yoshiaki Adachi, Daisuke Oyama
Format: Article
Language:English
Published: AIP Publishing LLC 2017-05-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4974016
Description
Summary:We developed a two-dimensional imaging method for weak magnetic charge distribution using a commercially available magnetic impedance sensor whose magnetic field resolution is 10 pT/Hz1/2 at 10 Hz. When we applied the vibrating sample magnetometry, giving a minute mechanical vibration to the sample and detecting magnetic signals modulated by the vibration frequency, the effects of 1/f noise and the environmental low-frequency band noise were suppressed, and a weak magnetic charge distribution was obtained without magnetic shielding. Furthermore, improvement in the spatial resolution was also expected when the signals were demodulated at the second harmonic frequency of the vibration. In this paper, a preliminary magnetic charge imaging using the vibrating sample magnetometry and its results are demonstrated.
ISSN:2158-3226