Approximate Dynamic Programming Methodology for Data-based Optimal Controllers
In this article, we present a methodology for learning data-based approximately optimal controllers, within the context of learning and approximate dynamic programming. There are previous solutions in dynamic programming that use linear programming in discrete state space, but cannot be applied dire...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universitat Politecnica de Valencia
2019-06-01
|
Series: | Revista Iberoamericana de Automática e Informática Industrial RIAI |
Subjects: | |
Online Access: | https://polipapers.upv.es/index.php/RIAI/article/view/10379 |
id |
doaj-a57bd6741923412e99cc22d24b8a4ff8 |
---|---|
record_format |
Article |
spelling |
doaj-a57bd6741923412e99cc22d24b8a4ff82021-02-02T06:42:24ZspaUniversitat Politecnica de ValenciaRevista Iberoamericana de Automática e Informática Industrial RIAI1697-79122019-06-0116327328310.4995/riai.2019.103797276Approximate Dynamic Programming Methodology for Data-based Optimal ControllersHenry Díaz0Leopoldo Armesto1Antonio Sala2Universitat Politècnica de ValènciaUniversitat Politècnica de ValènciaUniversitat Politècnica de ValènciaIn this article, we present a methodology for learning data-based approximately optimal controllers, within the context of learning and approximate dynamic programming. There are previous solutions in dynamic programming that use linear programming in discrete state space, but cannot be applied directly to continuous space. The objective of the methodology is to calculate data-based optimal controllers for continuous state space, these controllers are obtained by a lower estimation of the accumulated cost through functional approximators with linear parameterization. This is solved non-iteratively with linear programming, but it requires to provide appropriate conditions for regressor regularization and to introduce a cost of leaving the region with valid data, in order to obtain satisfactory results (avoiding unrestricted or poorly conditioned solutions).https://polipapers.upv.es/index.php/RIAI/article/view/10379Control inteligenteProgramación Dinámica AproximadaAprendizaje NeuronalControl Óptimo |
collection |
DOAJ |
language |
Spanish |
format |
Article |
sources |
DOAJ |
author |
Henry Díaz Leopoldo Armesto Antonio Sala |
spellingShingle |
Henry Díaz Leopoldo Armesto Antonio Sala Approximate Dynamic Programming Methodology for Data-based Optimal Controllers Revista Iberoamericana de Automática e Informática Industrial RIAI Control inteligente Programación Dinámica Aproximada Aprendizaje Neuronal Control Óptimo |
author_facet |
Henry Díaz Leopoldo Armesto Antonio Sala |
author_sort |
Henry Díaz |
title |
Approximate Dynamic Programming Methodology for Data-based Optimal Controllers |
title_short |
Approximate Dynamic Programming Methodology for Data-based Optimal Controllers |
title_full |
Approximate Dynamic Programming Methodology for Data-based Optimal Controllers |
title_fullStr |
Approximate Dynamic Programming Methodology for Data-based Optimal Controllers |
title_full_unstemmed |
Approximate Dynamic Programming Methodology for Data-based Optimal Controllers |
title_sort |
approximate dynamic programming methodology for data-based optimal controllers |
publisher |
Universitat Politecnica de Valencia |
series |
Revista Iberoamericana de Automática e Informática Industrial RIAI |
issn |
1697-7912 |
publishDate |
2019-06-01 |
description |
In this article, we present a methodology for learning data-based approximately optimal controllers, within the context of learning and approximate dynamic programming. There are previous solutions in dynamic programming that use linear programming in discrete state space, but cannot be applied directly to continuous space. The objective of the methodology is to calculate data-based optimal controllers for continuous state space, these controllers are obtained by a lower estimation of the accumulated cost through functional approximators with linear parameterization. This is solved non-iteratively with linear programming, but it requires to provide appropriate conditions for regressor regularization and to introduce a cost of leaving the region with valid data, in order to obtain satisfactory results (avoiding unrestricted or poorly conditioned solutions). |
topic |
Control inteligente Programación Dinámica Aproximada Aprendizaje Neuronal Control Óptimo |
url |
https://polipapers.upv.es/index.php/RIAI/article/view/10379 |
work_keys_str_mv |
AT henrydiaz approximatedynamicprogrammingmethodologyfordatabasedoptimalcontrollers AT leopoldoarmesto approximatedynamicprogrammingmethodologyfordatabasedoptimalcontrollers AT antoniosala approximatedynamicprogrammingmethodologyfordatabasedoptimalcontrollers |
_version_ |
1724300794548715520 |