Approximate Dynamic Programming Methodology for Data-based Optimal Controllers

In this article, we present a methodology for learning data-based approximately optimal controllers, within the context of learning and approximate dynamic programming. There are previous solutions in dynamic programming that use linear programming in discrete state space, but cannot be applied dire...

Full description

Bibliographic Details
Main Authors: Henry Díaz, Leopoldo Armesto, Antonio Sala
Format: Article
Language:Spanish
Published: Universitat Politecnica de Valencia 2019-06-01
Series:Revista Iberoamericana de Automática e Informática Industrial RIAI
Subjects:
Online Access:https://polipapers.upv.es/index.php/RIAI/article/view/10379
id doaj-a57bd6741923412e99cc22d24b8a4ff8
record_format Article
spelling doaj-a57bd6741923412e99cc22d24b8a4ff82021-02-02T06:42:24ZspaUniversitat Politecnica de ValenciaRevista Iberoamericana de Automática e Informática Industrial RIAI1697-79122019-06-0116327328310.4995/riai.2019.103797276Approximate Dynamic Programming Methodology for Data-based Optimal ControllersHenry Díaz0Leopoldo Armesto1Antonio Sala2Universitat Politècnica de ValènciaUniversitat Politècnica de ValènciaUniversitat Politècnica de ValènciaIn this article, we present a methodology for learning data-based approximately optimal controllers, within the context of learning and approximate dynamic programming. There are previous solutions in dynamic programming that use linear programming in discrete state space, but cannot be applied directly to continuous space. The objective of the methodology is to calculate data-based optimal controllers for continuous state space, these controllers are obtained by a lower estimation of the accumulated cost through functional approximators with linear parameterization. This is solved non-iteratively with linear programming, but it requires to provide appropriate conditions for regressor regularization and to introduce a cost of leaving the region with valid data, in order to obtain satisfactory results (avoiding unrestricted or poorly conditioned solutions).https://polipapers.upv.es/index.php/RIAI/article/view/10379Control inteligenteProgramación Dinámica AproximadaAprendizaje NeuronalControl Óptimo
collection DOAJ
language Spanish
format Article
sources DOAJ
author Henry Díaz
Leopoldo Armesto
Antonio Sala
spellingShingle Henry Díaz
Leopoldo Armesto
Antonio Sala
Approximate Dynamic Programming Methodology for Data-based Optimal Controllers
Revista Iberoamericana de Automática e Informática Industrial RIAI
Control inteligente
Programación Dinámica Aproximada
Aprendizaje Neuronal
Control Óptimo
author_facet Henry Díaz
Leopoldo Armesto
Antonio Sala
author_sort Henry Díaz
title Approximate Dynamic Programming Methodology for Data-based Optimal Controllers
title_short Approximate Dynamic Programming Methodology for Data-based Optimal Controllers
title_full Approximate Dynamic Programming Methodology for Data-based Optimal Controllers
title_fullStr Approximate Dynamic Programming Methodology for Data-based Optimal Controllers
title_full_unstemmed Approximate Dynamic Programming Methodology for Data-based Optimal Controllers
title_sort approximate dynamic programming methodology for data-based optimal controllers
publisher Universitat Politecnica de Valencia
series Revista Iberoamericana de Automática e Informática Industrial RIAI
issn 1697-7912
publishDate 2019-06-01
description In this article, we present a methodology for learning data-based approximately optimal controllers, within the context of learning and approximate dynamic programming. There are previous solutions in dynamic programming that use linear programming in discrete state space, but cannot be applied directly to continuous space. The objective of the methodology is to calculate data-based optimal controllers for continuous state space, these controllers are obtained by a lower estimation of the accumulated cost through functional approximators with linear parameterization. This is solved non-iteratively with linear programming, but it requires to provide appropriate conditions for regressor regularization and to introduce a cost of leaving the region with valid data, in order to obtain satisfactory results (avoiding unrestricted or poorly conditioned solutions).
topic Control inteligente
Programación Dinámica Aproximada
Aprendizaje Neuronal
Control Óptimo
url https://polipapers.upv.es/index.php/RIAI/article/view/10379
work_keys_str_mv AT henrydiaz approximatedynamicprogrammingmethodologyfordatabasedoptimalcontrollers
AT leopoldoarmesto approximatedynamicprogrammingmethodologyfordatabasedoptimalcontrollers
AT antoniosala approximatedynamicprogrammingmethodologyfordatabasedoptimalcontrollers
_version_ 1724300794548715520