Performance evaluation of nanoclay enriched anti-microbial hydrogels for biomedical applications

A major factor contributing to the failure of orthopedic and orthodontic implants is post-surgical infection. Coating metallic implant surfaces with anti-microbial agents has shown promise but does not always prevent the formation of bacterial biofilms. Furthermore, breakdown of these coatings withi...

Full description

Bibliographic Details
Main Authors: Sonali Karnik, Udayabhanu M. Jammalamadaka, Karthik K. Tappa, Rebecca Giorno, David K. Mills
Format: Article
Language:English
Published: Elsevier 2016-02-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844015304667
Description
Summary:A major factor contributing to the failure of orthopedic and orthodontic implants is post-surgical infection. Coating metallic implant surfaces with anti-microbial agents has shown promise but does not always prevent the formation of bacterial biofilms. Furthermore, breakdown of these coatings within the human body can cause release of the anti-microbial drugs in an uncontrolled or unpredictable fashion. In this study, we used a calcium alginate and calcium phosphate cement (CPC) hydrogel composite as the base material and enriched these hydrogels with the anti-microbial drug, gentamicin sulfate, loaded within a halloysite nanotubes (HNTs). Our results demonstrate a sustained and extended release of gentamicin from hydrogels enriched with the gentamicin-loaded HNTs. When tested against the gram-negative bacteria, the hydrogel/nanoclay composites showed a pronounced zone of inhibition suggesting that anti-microbial doped nanoclay enriched hydrogels can prevent the growth of bacteria. The release of gentamicin sulfate for a period of five days from the nanoclay-enriched hydrogels would supply anti-microbial agents in a sustained and controlled manner and assist in preventing microbial growth and biofilm formation on the titanium implant surface. A pilot study, using mouse osteoblasts, confirmed that the nanoclay enriched surfaces are also cell supportive as osteoblasts readily, proliferated and produced a type I collagen and proteoglycan matrix.
ISSN:2405-8440