Recent Advances in ASIC Development for Enhanced Performance M-Sequence UWB Systems

Short-range ultra-wideband (UWB) radar sensors belong to very promising sensing techniques that have received vast attention recently. The M-sequence UWB sensing techniques for radio detection and ranging feature several advantages over the other short-range radars, inter alia superior integration c...

Full description

Bibliographic Details
Main Authors: Pavol Galajda, Martin Pecovsky, Miroslav Sokol, Martin Kmec, Dusan Kocur
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Sensors
Subjects:
UWB
SoC
Online Access:https://www.mdpi.com/1424-8220/20/17/4812
Description
Summary:Short-range ultra-wideband (UWB) radar sensors belong to very promising sensing techniques that have received vast attention recently. The M-sequence UWB sensing techniques for radio detection and ranging feature several advantages over the other short-range radars, inter alia superior integration capabilities. The prerequisite to investigate their capabilities in real scenarios is the existence of physically available hardware, i.e., particular functional system blocks. In this paper, we present three novel blocks of M-sequence UWB radars exploiting application-specific integrated circuit (ASIC) technology. These are the integrated 15th-order M-sequence radar transceiver on one chip, experimental active Electronic Communication Committee (ECC) bandpass filter, and miniature transmitting UWB antenna with an integrated amplifier. All these are custom designs intended for the enhancement of capabilities of an M-sequence-based system family for new UWB short-range sensing applications. The design approaches and verification of the manufactured prototypes by measurements of the realized circuits are presented in this paper. The fine balance on technology capabilities (Fc of roughly 120 GHz) and thoughtful design process of the proposed blocks is the first step toward remarkably minimized devices, e.g., as System on Chip designs, which apparently allow broadening the range of new applications.
ISSN:1424-8220